• 제목/요약/키워드: Robust Observer

검색결과 445건 처리시간 0.03초

INTEGRATED CONTROL SYSTEM DESIGN OF ACTIVE FRONT WHEEL STEERING AND FOUR WHEEL TORQUE TO IMPROVE VEHICLE HANDLING AND STABILITY

  • Wu, J.Y.;Tang, H.J.;Li, S.Y.;Zheng, S.B.
    • International Journal of Automotive Technology
    • /
    • 제8권3호
    • /
    • pp.299-308
    • /
    • 2007
  • This study proposes a two-layer hierarchical control system that integrates active front wheel steering and four wheel braking torque control to improve vehicle handling performance and stability. The first layer is a robust model matching controller (R-MMC) based on linear matrix inequalities (LMIs), which optimizes an active front steering angle compensation and a desired yaw moment control, and calculates reference wheel slip for the target wheel according to the desired yaw moment. The second layer is a moving sliding mode controller (MSMC) that can track the reference wheel slip in a predetermined time by commanding proper braking torque on the target wheel to achieve the desired yaw moment. Since vehicle sideslip angle measurement is difficult to achieve in practice, a sliding mode observer (SMO) that requires only vehicle yaw rate as the measured input is also developed in this study. The performance and robustness of the SMO and the integrated control system are demonstrated through comprehensive computer simulations. Simulation results reveal the satisfactory tracking ability of the SMO, and the superior improved vehicle handling performance, stability and robustness of the integrated control vehicle.

The Control of SFFS in the Office Environments and It's Integration

  • Kim, Jung-Su;Lee, Min-Cheol;Lee, Won-Hee;Kim, Dong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2164-2169
    • /
    • 2005
  • SFFS(Solid Freeform Fabrication System) can quickly makes models and prototype parts from 3D computer-aided design (CAD) data. Three dimensional printing(3DP) is a kind of the solid freeform fabrication. The 3DP process slices the modeling data into the 50-200um along to z axis. And we pile the powder and make the manufactures. A manufacture is made by the SFFS has the precision of the 50um. Therefore the x-y table of SFFS to move a printhead must be the system that has a high speed and accuracy. So we proposed the SMCSPO algorithm for SFFS. The major contribution is the design of a robust observer for estimating the state and the perturbation of the timing belt system, which is combined with a robust controller. The control performance of the proposed algorithm is compared with PD control by the simulation and the experiment. The control algorithm of the SFFS is presented in the office environment. The system between control system and printhead for the SFFS is also integrated

  • PDF

외란관측기를 이용한 볼스크류 구동 2축 서보계의 최적튜닝 (Optimal Tuning of a Ballscrew Driven Biaxial Servo System)

  • 신동수;정성종
    • 한국생산제조학회지
    • /
    • 제20권5호
    • /
    • pp.589-597
    • /
    • 2011
  • In this paper, optimal tuning of a cross-coupled controller linked with the feedforward controller and the disturbance observer is studied to improve contouring and tracking accuracy as well as robustness against disturbance. Previously developed integrated design and optimal tuning methods are applied for developing the robust tuning method. Strict mathematical modeling of the multivariable system is formulated as a state-space equation. Identification processes of the servomechanism are conducted for mechanical servo models. An optimal tuning problem to minimize both the contour error and settling time is formulated as a nonlinear constrained optimization problem including the relevant controller parameters of the servo control system. Constraints such as relative stability, robust stability and overshoot, etc. are considered for the optimization. To verify the effectiveness of the proposed optimal tuning procedure, linear and circular motion experiments are performed on the xy-table. Experimental results confirm the control performance and robustness despite the variation of parameters of the mechanical subsystems.

전기 유압 매니플레이터의 강건 힘 제어 (Robust Force Control of a 6-Link Electro-Hydraulic Manipulator)

  • 안경관;조용래;양순용;이병룡
    • 한국정밀공학회지
    • /
    • 제19권4호
    • /
    • pp.202-208
    • /
    • 2002
  • An electro-hydraulic manipulator using hydraulic actuators has many nonlinear elements, and its parameter fluctuations are greater than those of an electrically driven manipulator. So it is relatively difficult to realize not only stable contact work but also accurate force control for the autonomous assembly tasks using hydraulic manipulators. In this report, we applied a compliance control which is based on the position control by a disturbance observer for our manipulator system. And a reference trajectory modification method is proposed in order to achieve accurate force control even though the stiffness and position of environment change. Experimental results show that highly robust force tracking by a 6-link electro-hydraulic manipulator could be achieved under various environment conditions.

수밀댐퍼 구동장치의 강인제어에 관한 연구 (Design of a Robust Controller for a Watertight Damper Driving System)

  • 한승훈;장지성
    • 드라이브 ㆍ 컨트롤
    • /
    • 제14권2호
    • /
    • pp.45-51
    • /
    • 2017
  • Semi-submersible drilling rigs are offshore plants that perform functions such as ocean exploration for oil and gas acquisition, drilling and production, and storage and unloading of crude oil and gas. Semi-submersible drilling rigs use watertight dampers as emergency buoyancy holders. Since the watertight damper is an emergency shutoff device, it is mainly driven by a pneumatic driving system that can operate without a power supply. The pneumatic driving system has highly non-linear characteristics due to compressibility of air and external disturbance such as static and Coulomb friction. In this paper, a new control algorithm is proposed for a watertight damper driving system based on the sliding mode control with a disturbance observer. To evaluate control performance and robust stability of the designed controller, the control results were compared with the results obtained using the state feedback controller. As a result, it was confirmed that the pneumatic driving system for driving the watertight damper using the sliding mode controller with a disturbance observer can obtain excellent control performance against the parameter changes and the disturbance input.

망막의 3차원 영상화를 위한 데드비트 외란 관측기를 가진 고속, 고강성 제어 시스템 (High Speed and Robust Control System with Deadbeat Disturbance Observer for 3D Eye Imaging Equipment)

  • 고종선;이태훈;김영일
    • 전력전자학회논문지
    • /
    • 제8권5호
    • /
    • pp.418-426
    • /
    • 2003
  • 컴퓨터 모니터를 통해 안구망막의 형태와 두께를 보기 위해서 레이저의 경로차를 이용하는 SLO 장비가 사용되고 있다. 이러한 방법으로 망막의 선명한 3차원 영상을 보기 위해서는 레이저 광경로 시스템의 정확한 동기제어가 필요하다. 이 영상을 얼기 위해서는 평면주사를 하는데 있어서 정밀동기제어가 매우 중요하다. 본 논문에서는 안구의 3차원 영상을 만들기 위해 고속 동기제어를 구현한다. 또한 고속 제어시 부하 관성에 의해 발생하는 위치 응답의 오차를 보상하기 위해서 기존 PI(Proportional-Integral) 제어기에 데드비트 외란 관측기를 추가한다. 제안된 제어시스템은 고속 제어시 발생하는 토크 변화에 강인하고 정밀한 시스템이 된다. 이상의 제안된 시스템의 안정성과 유용함이 컴퓨터 시뮬레이션과 실험을 통하여 확인되었다.

The Design of Sliding Mode Controller with Perturbation Estimator Using Observer-Based Fuzzy Adaptive Network

  • Park, Min-Kyu;Lee, Min-Cheol;Go, Seok-Jo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.506-506
    • /
    • 2000
  • To improve control performance of a non-linear system, many other researches have used the sliding mode control algorithm. The sliding mode controller is known to be robust against nonlinear and unmodeled dynamic terms. However. this algorithm raises the inherent chattering caused by excessive switching inputs around the sliding surface. Therefore, in order to solve the chattering problem and improve control performance, this study has developed the sliding mode controller with a perturbation estimator using the observer-based fuzzy adaptive network generates the control input for compensating unmodeled dynamics terms and disturbance. And, the weighting parameters of the fuzzy adaptive network are updated on-line by adaptive law in order to force the estimation errors to converge to zero. Therefore, the combination of sliding mode control and fuzzy adaptive network gives rise to the robust and intelligent routine. For evaluating control performance of the proposed approach. tracking control simulation is carried out for the hydraulic motion simulator which is a 6-degree of freedom parallel manipulator.

  • PDF

서보보상기를 사용한 견실 출력귀환제어 (Robust Output Feedback Control Using a Servocompensator)

  • 이호진;이금원
    • 융합신호처리학회논문지
    • /
    • 제8권3호
    • /
    • pp.217-221
    • /
    • 2007
  • 본 논문에서는 비선형시스템의 제어대상의 하나로 사용되고 있는 Chua회로를 대상으로 견실 출력귀환제어를 실현한다. 특히 비선형인 경우는 선형의 경우와 틀린 접근방법을 사용하여야 한다. 우선 기준신호발생기인 exosystem을 정의하고 출력추종오차식으로부터 오차방정식을 유도하고, 적분기 형태의 서보보상기를 사용하여 수정된 슬라이딩면을 설계한다. 수정된 슬라이딩면과 서보보상기에 사용되는 파라미터들은 슬라이딩면 및 서보보상기가 안정하도록 관련다항식이 Hurwitz조건을 만족하도록 정한다. 특히 모든 파라미터들이 미지여서, 오차신호들이 귀환으로부터 얻을 수 없기 때문에, 고이득 관측기를 설계하고, 이 추정값을 사용하여 안정화제어기를 얻는다. 시뮬레이션결과를 제시함으로서 알고리즘이 유용함을 증명한다.

  • PDF

최소 제어 인자 도출을 통한 사용편의성 높은 제어시스템 설계 (Design of a User-Friendly Control System using Least Control Parameters)

  • 허영진;박대길;김진현
    • 로봇학회논문지
    • /
    • 제9권1호
    • /
    • pp.67-77
    • /
    • 2014
  • An electric motor is the one of the most important parts in robot systems, which mainly drives the wheel of mobile robots or the joint of manipulators. According to the requirement of motor performance, the controller type and parameters vary. For the wheel driving motors, a speed tracking controller is used, while a position tracking controller is required for the joint driving motors. Moreover, if the mechanical parameters are changed or a different motor is used, we might have to tune again the controller parameters. However, for the beginners who are not familiar about the controller design, it is hard to design pertinently. In this paper, we develop a nominal robust controller model for the velocity tracking of wheel driving motors and the position tracking of joint driving motors based on the disturbance observer (DOB) which can reject disturbances, modeling errors, and dynamic parameter variations, and propose the methodology for the determining the least control parameters. The proposed control system enables the beginners to easily construct a controller for the newly designed robot system. The purpose of this paper is not to develop a new controller theory, but to increase the user-friendliness. Finally, simulation and experimental verification have performed through the actual wheel and joint driving motors.

구동기 포화가 있는 견실 고속 온동 제어기 설계 및 정밀 위치 결정 시스템에의 적용 (Design of Robust High-Speed Motion Controller with Actuator Saturation and Its Application to Precision Positioning System)

  • 최현택;김봉근;서일홍;정완균
    • 제어로봇시스템학회논문지
    • /
    • 제6권9호
    • /
    • pp.768-776
    • /
    • 2000
  • A robust high-speed motion controller is proposed. The proposed controller consists of the proximate time optimal servomechai는 (PTOD) for high-speed motion, disturbance observer (DOB) for robustness, friction compensator, and saturation handling element, In the proposed controller, DOB basically provides the chance to apply PTOS to non-double integrator systems by drastically reducing disturbances as well as unwanted signals due to difference between real system and the double integrator model. But, in DOB-based systems, if control input is saturated due to control input PTOS and/or DOB, overall system stability cannot be guaranteed. To solve this problem, ribust stability, when the control input is saturated. Eventually, a simple saturation handling element is inserted to maintain internal stability of overall system. Also, we explain the our two saturation handling methods, Additional Saturation Element (ASE_ and Self Adjusting Saturation (SAS), are the equivalent solutions of the saturation problem to maintain internal stability. The stability and performance of the proposed controller are verified through numerical simulations and experiments using a precision linear motor system.

  • PDF