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ABSTRACT-This study proposes a two-layer hierarchical control system that integrates active front wheel steering and
four wheel braking torque control to improve vehicle handling performance and stability. The first layer is a robust model
matching controller (R-MMC) based on linear matrix inequalities (LMIs), which optimizes an active front steering angle
compensation and a desired yaw moment control, and calculates reference wheel slip for the target wheel according to the
desired yaw moment. The second layer is a moving sliding mode controller (MSMC) that can track the reference wheel
slip in a predetermined time by commanding proper braking torque on the target wheel to achieve the desired yaw
moment. Since vehicle sideslip angle measurement is difficult to achieve in practice, a sliding mode observer (SMO) that
requires only vehicle yaw rate as the measured input is also developed in this study. The performance and robustness of
the SMO and the integrated control system are demonstrated through comprehensive computer simulations. Simulation
results reveal the satisfactory tracking ability of the SMO, and the superior improved vehicle handling performance,
stability and robustness of the integrated control vehicle.
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NOMENCLATURE

m : vehicle total mass

m; : vehicle sprung mass

h : height of the sprung mass c.g.

h, : distance of the sprung mass c.g. from the roll
axes

I, : vehicle moment of inertia about yaw axis

L, : vehicle moment of inertia about roll axis

I, : sprung mass product of inertia

L : distance of c.g. from the front axle

L : distance of c.g. from the rear axle

T; : front track width

T. : rear track width

C; : cornering stiffness of front tire

C, : cornering stiffness of rear tire

Ky : roll axis stiffness

D, :roll axis damping

I, : wheel moment of inertia

R, : wheel effective rolling radius
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1. INTRODUCTION

The vehicle active chassis control system has been one of
the main areas of research in the automotive industry to
improve vehicle safety and handling performance. Active
rear steering (ARS) as part of a four wheel steering
(4WS) system has been studied extensively and found to
enhance vehicle cornering ability by steering the front
and rear wheels in accordance vehicle states (Nagai er al.,
1991; Qu and Zu, 2005). Nevertheless, the 4WS control
system becomes less effective when lateral tire forces
approach their adhesion limits and vehicle dynamics
show nonlinear characteristics (Horiuchi et al., 1996).
Therefore, a direct yaw moment control (DYC) system,
with proper distribution of driving or braking torque
between the right and left wheels, is proposed to improve
vehicle dynamic stability, even if tire lateral forces are
approaching their limits (Shino and Nagai, 2001; Boada
et al., 2005).

The integrated control system, which properly coordi-
nates four wheel steering and yaw moment control, has
the potential to achieve superior vehicle handling perfor-
mance and stability over 4WS and DYC systems alone
(Nagai and Yamanaka, 1996; Mokhiamar and Abe, 2002



300 J.Y. WU, H. J. TANG, S. Y. LI and S. B. ZHENG

Nohtomi et al., 2005). But this control system has to
control the four wheel steering angles, which outweighs
the added complexity and cost of the production of such
vehicles. Recently, the technology for active front wheel
steering integrated with direct yaw moment control is
showing a remarkable development (Nagai et al., 2002;
Suzumura et al., 2004). In the work of Nagai (2002), a
LQ-optimal controller was designed to compensate for
the error between the actual state and the desired state of
the vehicle. However, the LQ-optimal controller could
not guarantee the robustness of the parameter uncertain-
ties and external disturbances (Zhou and Doyle, 1997).
Therefore, a two-layer hierarchical control system that
integrates active front wheel steering and yaw moment
control is presented in this study. This integrated control
system has a two-layer hierarchical structure. The first
layer is a robust model matching controller (R-MMC)
that optimizes an active front wheel steering angle com-
pensation and a desired yaw moment control, and
calculates the reference wheel slip for the target wheel
according to the desired yaw moment. The calculated
reference wheel slip is the input of the second layer,
which is a moving sliding mode controller (MSMC) that
can track the input accurately and command braking
torque on the target wheel to achieve the desired yaw
moment. One key feature of the designed integrated
control system is that the stability analysis and optimi-
zation of the R-MMC are cast in terms of linear matrix
inequalities (LMIs). In addition to stability, control consi-
derations such as disturbance rejection, constraints on
input and output are also incorporated in the LMIs. The
other key feature is that the MSMC traps the system state
on the sliding surface at all times, therefore the chattering
phenomenon is eliminated and the response speed is
improved. In this integrated control system, one of the
main assumptions made is the accessibility to vehicle
yaw rate and sideslip angle measurement for feedback.
The yaw rate can be measured easily using a gyro. But
measuring the sideslip angle would represent a dispropor-
tional cost in the case of vehicle production (Stéphant et
al., 2004). Therefore, a sliding mode observer that requires
only the yaw rate as the measured input is also proposed
in this study. Simulation results show that the sliding
mode observation is highly accurate with respect to the
actual sideslip angle, and the integrated control system
achieves preferable handling performance and stability.
They both maintain good robustness, even if the vehicle
parameters and road surface conditions change.

This paper is organized as follows. In section 2, the
eight-degree-of-freedom (8-DOF) vehicle and tire models
are briefly presented, both including nonlinear characteri-
stics. Section 3 describes the hierarchical integrated control
system and the sliding mode observer. The simulation
results of the integrated control vehicle are compared

Figure 1. Parameter definitions for the vehicle model.

with that of a front wheel steering (FWS) vehicle and a
DYC only vehicle under slalom maneuver, crosswind
disturbance and g-split road surface conditions in section
4. Finally, Section 5 gives a brief conclusion.

2. VEHICLE AND TIRE MODELS

2.1. Vehicle Model

The vehicle model used in this study is shown in Figure
1. It is an 8-DOF vehicle model that includes both lateral
and longitudinal dynamics as well as the nonlinearities in
the system (Kiencke and Nielsen, 2000). Degrees of
freedom associated with the model are the longitudinal
and lateral velocities, yaw rate, roll rate and four wheel
rotational speeds. The dynamics equations governing the
motion are derived as:

Longitudinal motion:

m(i - p)+mh, yo=X, + Xp + X, + X,.,. '6))
Lateral motion:
mV - p)+mh, =Yy + Y, + Y, + Y,,. (2)
Yaw motion:
L1 ¢=LAYy+ Y,)-L (Y, +Y,)

—05T(X; - X5 )-05T (X, -X.,). 3)
Roll motion:
L.6—1.v=mh,(¥ + up)+mh.g¢

~(Ky+ Ko)p~(Dyr+ D) 9. CY)
Wheel rotational motion:
&)

u, v, yand ¢ are the longitudinal velocity, lateral velocity,
yaw rate and vehicle roll angle. F,; and F,; denote the tire
longitudinal and lateral forces. The subscripts i=f, » and
J=I, r represent the corresponding tire. For example, F,

1.6, =-RF,+T,-T,

wh g eif b
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stands for longitudinal tire force on the front left tire. &
and & are the front and rear wheel steering angles. ¢
represents the wheel slip angle. @;, T,; and T, represent
the wheel angular acceleration, driving and braking
torques. The terms X;; and Y} are expressed as a function
of the longitudinal and lateral tire forces:

X,=F,cosd ~F, sing, (6)
Y, =F,sind, +F, cosd, %
where ij=fl, fr, rl, rr, §=0,=8 and 3=6,=5=0.

2.2. Tire Model

The modeling of tire force plays an important role in
determining the vehicle dynamic behaviors. Generally,
the study of the tire model can be categorized into two
different approaches. One is the development of the
analytical model (Sakai, 1990), the other is the construc-
tion of the semi-empirical model (Pacejka, 2002). The
latest semi-empirical tire model, Magic Formula by
Pacejka, is used in this study for its convenience and
accuracy. The general form (sine version) of the formula
reads:

Y(x)=D sin{C arctan{Bx—E[Bx—arctan(Bx)]}} &)

where Y(x) is either longitudinal tire force, F,, with x the
longitudinal wheel slip, A, or lateral tire force, F,, with x
the tire slip angle, o

Tire self aligning moment, M, is calculated as a
product of the lateral force and the pneumatic trail, o,
which is based on a cosine version of the Magic Formula:

Y(x)=D cos{C arctan{Bx—FE[Bx—arctan(Bx)] }} )

where Y(x) is the pneumatic, o, with x the tire slip angle,
.

The coefficients in the formula depend on the type of
tire and road conditions, and its values have been vali-
dated with actual tire test data. The forces and moments
in the combined slip condition are based on the pure slip
characteristics multiplied by a weighting function. The
tire model includes the transient behaviors, which means
the tire forces and moments should be multiplied by a
fist-order lag function.

An important quantity for tire friction force calculation
is the wheel vertical load, F,;, which is a function of both
the vehicle’s static and its dynamic loads transfer. It can
be represented as:

F-/; :%_maxi_, ma,,L,h—(KW¢+DM¢) (10)
K 2L 2L LT, T,
Lh (K, ¢+D,¢
F~ﬁ = %_mal i+ ma'\, ks ( uf¢ of¢) (11)
' 2L 2L LT, 7}
F, = mgL, +ma, h malh (K ¢+D,0) (12)
. 2L 2L LT T

mglL
F, =" 4 ma,

2L

. maLh (K$+D,9) (13)
2L LT T,

where a, and a, are the vehicle longitudinal and lateral
accelerations.

Tire lateral force calculation depends on the wheel
vertical load and slip angle. The slip angle of each wheel
is calculated as:

+Ly

v
aﬂ :5] —arctan.(m)+A5f (14)
v+ Ly
a, =§f—arctan(m)+A5f (15)
a, =—arctan(ﬂ) (16)
" u—0.5Ty
v=Ly
= —arctan(———'_y. 17
o, =—arc an(u " O.SZy) (7

The calculation of wheel longitudinal slip, A, requires the
wheel longitudinal velocity. These wheel longitudinal
speeds, taking into account the vehicle lateral dynamics,
are calculated as:

uﬂ=(u—%;/)cosc5f+(v+L/}/)sin5f (18)
T, . 19)

u, -_—(u+—2—}/)cosé'_, +(v+Ly)sind,

oLy )

u,r=u+—€’~;/ @n

where u;, u; u, and u, are the wheel longitudinal
velocities for the front left, front right, rear left and rear
right wheels respectively. Moreover, the longitudinal
wheel slip is defined as:

,1251%1@. Rw <u
] ’ Wy Y
U
! . (22)
Rw —u
_KG,~u,
, =————, Rw 2u
R w

w oy

In this paper, the driving torque is not considered, hence
the wheel slip is:

1= Ru,w,/ —-u

¥

~, R <u, . (23)

u
v

3. CONTROL SYSTEM DESIGN

The goal of this control system is to coordinate the active
front wheel steering and four wheel braking torque
control to improve vehicle maneuverability and stability.
Figure 2 shows the block diagram of the control system.

This setup has a hierarchical control structure of two
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Figure 2. Block diagram of system controller.
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layers based on a sliding mode sideslip angle observer.
The first layer is an R-MMC controller that optimizes an
active front wheel steering angle compensation, Ad, and
a desired yaw moment control, and calculates the
reference wheel slip, A, for the target wheel according to
the desired yaw moment. The second layer is an MSMC
controller that tracks the calculated reference wheel slip
by commanding braking torque, T}, on the target wheel to
achieve the desired yaw moment control. The feedback
variable sideslip angle is observed by the SMO.

3.1. Linear Vehicle Model

The bicycle model is a well-known linear approximation
of vehicle nonlinear dynamics. To design the control
system, this model is described in vehicle co-ordinates,
and the lateral motion state space equation is represented
as:

i=Ax+ES, +BU 24
where , _ 8 vl

[ 2«Cc,+C) : 2L,C,-LC)

e mu mu’
| 2ALC,-LC) ALC,+LC)
L 1. I u
mu mu
E= B=
2LC, |’ 2LC, 1
L 1 1:: [ZZ

B is the sideslip angle. C; and C, indicate the comering
stiffness of the front and rear tires.

In the bicycle model, the front and rear wheel slip
angles, ¢; and ¢, are approximated as:

a,=8,-f-"L 180 (25)

s
o =gl (26)
u
The lateral forces generated by the front and rear tires can
be calculated as:
F,+F,=-2C,a, @D
R +E, =-2Ca,. e

To match the desired model, a control input vector

U=[Aé N}, which includes an active front wheel steering
compensation and a desired yaw moment control, is
added to the bicycle model. N=C;A,F,; T/2, C,is the slope
in the linear region of the y—A4 curve and T, is the track
width of the vehicle.

In Figure 2, the desired model generates the reference
vehicle dynamic responses corresponding to the driver’s
steering input. The desired sideslip angle and the desired
yaw rate dynamical responses are two independent first-
order systems (Shino and Nagai, 2001), and they can be
represented as:

8, = kS,
d

1+ TﬁS (29)
2 “ 1

L+ ful) 1478

where, k=0, 7;is the desired sideslip angle response time
constant. uf,,:CfC,Lz/m(L,C,— L;C;) is the vehicle
characteristic velocity, 7, is the desired yaw rate response
time constant, and S is the Laplace operator. The module
of % should be no larger than |ug/u| because the
maximum friction coefficient # is always below 1. The
desired vehicle dynamic model can be described by the
state space form:

L 173
T T
i, =Ax,+ES =| 7 Pl % s 30)
d dd & r 1 k !
0 -l &
Tr Ty
where ¢, - —*____. In this study, a desired over steer
L(1+ u'/u:,,)

desired yaw moment control can be obtained by adjusting
the slip ratio of the front-outer wheel. Similarly, a desired
under steer yaw moment control is obtained by adjusting
the slip ratio of the rear-inner wheel. Adjusting wheel slip
only one wheel at a time is a simple but effective method.
Another advantage of adjusting wheel slip one wheel at a
time is that the deceleration of the vehicle is less than it is
when adjusting wheel slips of two or more wheels with
the same amount of yaw moment generated (Kimbrough,
1999).

3.2. Robust Model Matching Controller Design

In order to make the actual sideslip angle and yaw rate
follow their desired values, the error variables are defined
as:

e=x,—-x=[A8 Ay] . (31)

Accordingly, the error state space equation derived from
equation (24) and equation (30) is:

é=i,—%=A,(x,~x)+(4,~ Ax+(E, ~ E)5,~ BU (32)
So the augmented error state space equation becomes:

{Hoi v A}[’“"x’ "HEd . E}?, +[_:JU (33)
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Equation (33) can be further expressed as:
X=AX+BW+BU (34)

where state vector y — [xd - x} =[A8 ay B y] »State matrices
X

{ A‘I
A=
0

W=4, control input U=[Ad NJ"

In this study, we cast the control problem into a
multiobjective H.. optimal controller design in terms of
LMIs. The LMI-based design allows us to systematically
design a controller satisfying not only the quadratic
stability but also disturbance rejection, constraints on
input and output, etc. Then, the performance output
vector, Z, is defined as:

A”'_A}B =[E"'E], B =[‘B], input disturbance
A ! E 2 B

Z=[AB Ay A8, N] =CX+DW+D,U (35)

where C,, D,, and D,, are state matrices derived from
equation (34). The output feedback variables, Y, are
defined as:

Y=[A8 Ay =C, X +D,W +D,U (36)

where C,, D, and D,, are also state matrices derived from
equation (34).

Actually, each measurement variable is somewhat
‘polluted’ by sensor noise or estimation error, therefore
the output feedback variables must consider the influence
of noise. That is:

Y=Y+, (37

where W,=[n, n,)’ are noises added to the feedback
variables. Then the input disturbance vector, W, is
augmented as W =[5, n n,].

Combining equation (34), equation (35) and equation
(37), the state space realization of this error model is:

G,alc [ D, (38)

2
C, | Dn D,
where E‘Z[Bl 04xz]’ Bn‘—'[D” 04x2] and _D_z|=[D2[ [M] are
the augments of state matrices B,, D,, and D),,.

Scaling is very important in model analysis and
controller design, and the weighting functions reflect the
required performance of the system. To do this, decisions
are made on the expected magnitudes of disturbances and
each input signal, and on the allowed deviation of
performance output (Skogestad and Postlethwaite, 1996).
Denoting the input weighting matrix as W, and the output
weighting matrix as W,,, the systTem transfer function
matrices from input vector [W U] to output vector [Z
Y,J are:

G=W,GW,- (39)

The essential of H.. control is to design a controller, K,
such that the resultant close loop system is robustly stable
to the worst possible disturbance. The H.. normal of the
transfer function matrix from input disturbance to perfor-
mance output satisfies:

1oL =0T < @0

where ¢, is the maximum singular value of the closed
loop transfer function T, and ¢ 'is the specified close
loop performance. The LMI-based H.. optimal approach
is computationally more involved for large problems, and
allows the treatment of uncertain systems by stabilizing
several systems simultaneously and immediately. In com-
parison, the LMI approach has the merit of eliminating
the regularity restrictions attached to the Riccati-based
solution, and the H.. performance is directly optimized
by solving the linear matrix inequalities problem (Gahinet
et al., 1995).

3.3. Moving Sliding Mode Wheel Slip Controller
By controlling wheel slip, one can control the force
generated by the tire. That means we can achieve a yaw
moment control by assigning an appropriate wheel slip to
the target wheel. Sliding mode control is a popular and
effective method for achieving robust tracking of non-
linear systems. In this section, a moving sliding mode
controller is designed to track the reference wheel slip
mput. In contrast to the fixed sliding surface of the conv-
entional sliding mode control, the sliding mode controller
in this paper has a moving (time-varying) sliding surface.
Therefore, the states lie on the sliding surface all the time.
The controller improves the system performance in terms
of eliminating the chatting phenomenon, a decrease in the
reaching time and robustness to parameter variations
(Edwards and Spurgeon, 1998).

Differentiating equation (23) with respect to time gives
the derivative form:
izl[R“a')—Md] (41)

U u

Substituting equation (5) and equation (23) into equation
(41) yields:

i=l[£“—(—R‘,F' —n)—auw}f——’in 42)
ul| I, ul,

where f=—l[5;£+(l+/1)u]- The control object is to

U w
drive the system states (4,1) to the reference values
(A,,A,) by applying wheel braking torque, T, (assuming
A,=0 at all times). Based on the work of Bartoszewicz
(1995), Roy and Olgac (1997) and Chun and Sunwoo
(2004), the switching function, s, is defined as:

s=A-k(A, (43)
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v

Figure 3. Rotating sliding surface (4, < 0).

where k(r)=m+b=tl(l—%)z+% is the slope of the sliding
/ " 3

surface. The time-varying sliding surface slope is
designed by using the initial state and the final sliding
surface for maintaining the sliding motion from the
beginning. The moving sliding surface in equation (43) is
shown in Figure 3, where k=4/4, and k, = 1 . Parameter
1, which can be predetermined, is related to the response
time and the control input.

The control that moves the state (A,4) along the
sliding surface defined by s=0 is the equivalent control,
T,., Differentiating equation (43), we arrive at:

$=A- aA - (44)

Under the equivalent control braking torque, the sliding
motions are governed by s=0. That is;

i=ai- @5)
Substituting equation (42) into equation (45) gives:

ft, =a,. (46)

Solving for the equivalent control braking torque, T,

T, =27 =ad): @7

The dynamic value of f, which can not be calculated
accurately, is estimated as f. Neglecting the errors on
wheel angular velocity from sensors, the estimation error
of fis mainly affected by the estimated longitudinal tire
force, F. . One benefit using sliding mode control is that
it can handle parameter uncertainty as long as one knows
the parameter bounds (Khalil, 1996). Here, the estimation
error of fis bounded by some known function, F. That is:

|f-FEF (48)
where f- f= RTf( F - F). Then the approximate equivalent
ul,

control braking torque, T ., iS:

=227 =) (49)

The switching function, s, is used by the sliding mode
control to change the structure of the control law. The
most common way is to use the sign of the switching
function, sin(0). In a real system, disturbance and para-
meter uncertainty always exist, therefore an additional
term called hitting control braking torque, T, has to be
added to the overall braking torque control. Define the
overall braking torque control, 7,, as:

T, = TA,W +7,,sgn(s) (50)

where sgn(s) is the sign function.

The hitting control braking torque, T, is determined
by the following stability reaching condition (Slotine and
Li, 1991):

sl D)

where 77> 0 is a design parameter. Substituting equation
(44) into equation (51) yields:

{f —%(T‘M +T,, sgn(s))— a&} <-n|s|- (52)
ul

Using the definition for the approximate equivalent
control, T4, , as:

s(f = DR, s <l (53)
ul |
Defining the hitting control braking torque, T, as:

ul

T, == (F+m)- (54

Substituting equation (54) into equation (53) gives:
s&=‘f—f“s|—F|stS0' (55)
So that the Lyapunov asymptotic stability condition is
satisfied.

The discontinuous switching function, sgn(s), can
result in chattering during the sliding motion. Here, the
saturation function, sat(0d), is used to replace the dis-
continuous switching function to ‘soften’ the disconti-

nuity in the control law. Thus, the overall braking torque
control, T,, becomes:

T, =T, +T,sat(s/A) (56)

where A>0 is a design parameter, representing the
boundary layer thickness. The saturation function is
defined as:

sat(s/A) = §/a |sj<a, (57)
sgn(A) |S|ZA

3.4. Sliding Mode Sideslip Angle Observer
The sideslip angle must be regulated to improve the
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vehicle dynamic performance in the integrated control
system, and we have assumed that it can be measurement
directly. However, it is very hard to achieve in practice. In
this section a sliding mode observer is proposed as a
solution to this problem, and the estimated sideslip angle
is used in the integrated control system to regulate the
motion of the chassis (Hebden er al., 2004).

Under a linear change of coordinates T, the nominal
state space equation (34) can be expressed in the follow-
ing form:

X = A X, +4,X, +BU (58)

Y = XZ = AZI‘Xl + AZZXZ + BZZU + B|2]V‘ (59)

where x, =[ag Ay 8], Y=Xo=y A, has stable eigen-
values. In this new coordinate system, the measurement
output noise is included in the unknown but bounded
disturbance function f;. Consider an observer of the form:

"\All =A\t)?\+Anz/\;:+B:\U—Aney (60)

Y= AR+ AR, + BU - (A, - A)e, +v (61)

where A3, is a stable design matrix, and ey=f’~ Y.visa
switching term, performed to induce a sliding motion.
According to the Lyapunov quadratic stablility conditions,
v can be defined as:

Fe, (62)

e P
27y

where p(t, ¥, U) is a scalar function that satisfies:

Py, Uy £ (63)
P, is the unique symmetric positive definition solution to
the lyapunov equation:

Pdy, + 4P, <0+ (64)
Here, the sliding mode observer state space equation (60)
and equation (61) can be written as:

X =AKX+BU-Le, +Hv (65)

where the linear gain matrix:

L = T—l [ All }
’ Ay~ Ay,

and the nonlinear gain matrix:

0]

By introducing the state estimation error vector e=X — X,
one obtains the following error dynamics:

H= ”Blz

é=(A4~-LCe+Hv~-B,f (66)

where ¢=[0 0 0 1]
It is shown in the work of Edwards (1998) that the
nonlinear error system in equation {66) is quadratically

stable and a sliding motion takes place on the hyper plane
S, ={ee R":Ce=0} in finite time.

4. SIMULATION RESULTS

Extensive computer simulations were conducted to eval-
uate the effectiveness of the sliding mode observer and
the integrated control system. The feedback variable
sideslip angle used in the control system was observed by
the SMO. The observer and the integrated control system
were tested under three different critical maneuvers, and
the simulation results were compared with that of an
FWS vehicle and a DYC only vehicle. The simulation
was implemented in the Matlab/Simulink software environ-
ment.

4.1. Robustness to Road Condition Variations
In this simulation, the nominal road friction coefficient of
the integrated control system is #=0.8. To examine the
robustness of the control system on the low friction
coefficient road, a slalom simulation was carried out on a
road with friction coefficient 1=0.4. The initial vehicle
velocity was set to be 20 m/s. The slalom maneuver is
shown in Figure 4a, and was rotated stepwise with
increasing step values and increasing time intervals.
Figure 4b is the active front steering angle compen-
sation of the integrated control vehicle. The sideslip angle
responses of the FWS vehicle, the only DYC vehicle and
the integrated control vehicle are shown in Figure 4c. A
comparison of the desired yaw rates and the actual yaw
rates of these three vehicles are shown in Figure 4d. We
can observe that the FWS vehicle becomes unstable as
the steering angle approaches 2 degrees, while the DYC
vehicle and the integrated control vehicle can both control
their dynamic motions. Nevertheless, compared to the case
using only DYC, the yaw rate of the integrated control
vehicle can follow the desired yaw rate more exactly, and
the sideslip angle can also be regulated more satisfactorily.
Figure 4e compares the observed sideslip angle and its
actual value. It illustrated that performance of the SMO
tracks the actual sideslip angle almost exactly in both
magnitude and phase. From Figure 4f and Figure 4g, we
can observe that the braking torques of the integrated
control vehicle are smaller than those of the only DYC
vehicle, and the integrated control vehicle are supertor.
The simulation result indicates that the integrated control
vehicle is less sensitive to the variation of road friction
coefficient, and can maintain the steerability and stability
more satisfactorily.

4.2. Response to Crosswind Disturbance

The presence of a crosswind can affect the motion of a
vehicle at high speed. It can strike and make the vehicle
deviate from its course. In this simulation, the road
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surface is assumed to be £=0.8. After running straightly
at a constant speed of 35 m/s for 2 seconds, the crosswind
is presented. The wind speed is 30 m/s and its yaw angle
is 90 degrees. The lateral force disturbance and yaw

4
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Figure 4. Robustness to road condition variations.

moment from the crosswind is described in Figure 5a and
Figure 5b. From Figure 5d, Figure Se and Figure 5g, we
can observe that the FWS vehicle strays from its course
shortly after the crosswind is presented. Compared to that
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Figure 5. Response to crosswind disturbance.
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Figure 5. Continued.

of the DYC vehicle, the integrated control vehicle shows
satisfactory levels of tracking performance and converg-
ing ability to the desired motions. The sideslip angle
comparison of the SMO and its actual value of the
integrated vehicle are demonstrated in Figure 5f. The
effect of the integrated control system on vehicle lateral
displacement can be clearly seen from the vehicle tra-
jectories shown in Figure 5g. Figure Sh and Figure 5i
show that the front left wheels of the two vehicles have
applied braking torques to improve the handling perfor-
mance, and we can see that the braking torques of the
integrated control vehicle is smaller and smoother than
that of the DYC only vehicle.

4.3. Braking under w-Split Conditions
In the case of braking on z-split maneuver, compatibility
between stability and braking performance is impossible
by vehicle stabilization control system using only the
longitudinal tire forces. The integrated control system can
control the front steering angle actively. Then, lateral
forces control becomes possible, independently of the
longitudinal forces. Therefore, the compatibility is enabled.
The vehicle is initially running straight with a longitu-
dinal velocity of 30 m/s, the desired deceleration is —0.3G
for the period of 2s to 4s. The road surface is symmetrical
about the central longitudinal axis of the car, with £=0.8
and £=0.2 on the right and left sides of the car, respec-
tively. The friction coefficient assumed in the design of
the controllers is 0.8 for all tires. Figure 6a is the active
front steering angle compensation of the integrated
control vehicle. From Figure 6b, Figure 6¢, Figure 6d and
Figure 6f, we can observe that the FWS vehicle provides
large yaw deviation and sideslip angle because of the
difference of braking forces between left and right tires.
The vehicle starts to yaw and veer to the right side
immediately after the simulation begins. The integrated
control vehicle can still maintain the deceleration perfor-
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mance, and regulate the yaw rate and the sideslip angle
satisfactorily. On the other hand, even though the yaw
rate and sideslip angle can be suppressed, the decele-
ration performance of the DYC only vehicle deteriorates,
as shown in Figure 6b, because the braking torque on the
high-z side must be decreased to equate it to that of the
lowest-y side as possible, which can be seen from Figure
6g and Figure 6h.

5. CONCLUSION

This study proposes a new hierarchical integrated control
system of active front wheel steering angle compensation
and four wheel braking torque control, based on a sliding
sideslip angle mode observer. The performance and robust-
ness of the sliding mode observer and the integrated
control system were caused to conform through extensive
simulations. The simulation results showed that the slid-
ing mode observer can track the actual sideslip angle
satisfactorily in both magnitude and phase, and the integ-
rated control vehicle can follow its desired dynamic
motions exactly, even if vehicle parameters change.
Compared with the only direct yaw moment control
vehicle, the integrated control vehicle exhibits superior
handling performance, stability and system robustness
under various critical maneuvers.
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