• 제목/요약/키워드: Robust Control System

검색결과 2,487건 처리시간 0.029초

${\mu}$-합성법을 이용한 탐색기 주사루프의 강인 제어 (Robust Control of a Seeker Scan Loop System Using ${\mu}$-Systheis)

  • 이호평
    • 한국정밀공학회지
    • /
    • 제16권3호통권96호
    • /
    • pp.180-188
    • /
    • 1999
  • ${\mu}$-synthesis is applied to design a robust controller for a seeker scan loop system which has model uncertainty and is subject to a external disturbance due to abrupt missile maneuver. The issue of modelling a real-valued parametric uncertainty of a physical seeker scan loop system is discussed. The two-degree-of-frame control structure is employed to obtain better performance. It is shown that ${\mu}$-synthesis provides a superior framework for the robust control design of a seeker scan loop system which exhibits robust performance. The proposed robust control system satisfies design requirements, and especially shows good scanning performances for conical and rosette scan patterns despite parametric uncertainty in real system model.

  • PDF

불확실성의 경계를 추정하는 로봇 매니퓰레이터의 적응견실제어기 설계 및 실험 (Adaptive Robust Control for Robot Manipulator with the Uncertain Bound Estimation and Implementation)

  • 한명철;하인철
    • 제어로봇시스템학회논문지
    • /
    • 제10권4호
    • /
    • pp.312-316
    • /
    • 2004
  • In this paper, it is presented an adaptive robust control system to implement real-time control of a robot manipulator. There are Quantitative or qualitative differences between a real robot manipulator and a robot modeling. In order to compensate these differences, uncertain factors are added to a robot modeling. The uncertain factors come from imperfect knowledge of system parameters, payload change, friction, external disturbance, etc. Also, uncertainty is often nonlinear and time-varying. In the proceeding work, we proposed a class of robust control of a robot manipulator and provided the stability analysis. In the work, we propose a class of adaptive robust control of robot manipulator with bound estimation. Through experiments, the proposed adaptive robust control scheme is proved to be an efficient control technique for real-time control of a robot system using DSP.

강인 반복 제어를 이용한 비선영 유도탄 자동조종장치 (A Robust Recursive Control Approach to Nonlinear Missile Autopilot)

  • 남헌성;유준
    • 제어로봇시스템학회논문지
    • /
    • 제7권12호
    • /
    • pp.1031-1035
    • /
    • 2001
  • In this paper, a robust recursive control approach for nonlinear system, which is based on Lyapunov stability, is proposed. The proposed method can apply to extended systems including cascaded systems and the stability is guaranteed in the sense of Lyapunov. The recursive design procedure so called “robust recursive control approach” is used to find a stabilizing robust controller and simultaneously estimate the uncertainty parameters. First, a nonlinear model with uncertainties whose bounds are unknown is derived. Then, unknown bounds of uncertainties are estimated. By using these estimates, the stabilizing robust controller is updated at each step. This approach is applied to the pitch autopilot design of a nonlinear missile system and simulation results indicate good performance.

  • PDF

비중앙 집중식 강성 적응 제어법을 통한 산업용 로봇 궤도추적제어 (Robust Decentralized Adaptive Controller for Trajectory Tracking Control of Uncertain Robotic Manipulators)

  • 유삼상
    • 수산해양기술연구
    • /
    • 제30권4호
    • /
    • pp.329-340
    • /
    • 1994
  • This paper presents a dynamic compensation methodology for robust trajectory tracking control of uncertain robot manipulators. To improve tracking performance of the system, a full model-based feedforward compensation with continuous VS-type robust control is developed in this paper(i.e,. robust decentralized adaptive control scheme). Since possible bounds of uncertainties are unknown, the adaptive bounds of the robust control is used to directly estimate the uncertainty bounds(instead of estimating manipulator parameters as in centralized adaptive control0. The global stability and robustness issues of the proposed control algorithm have been investigated extensively and rigorously via a Lyapunov method. The presented control algorithm guarantees that all system responses are uniformly ultimately bounded. Thus, it is shown that the control system is evaluated to be highly robust with respect to significant uncertainties.

  • PDF

초전도 플라이휠 에너지 저장장치의 강인제어를 이용한 전력계통의 저주파진동 억제 (Damping of Low Frequency Oscillation in Power System using Robust Control of Superconductor Flywheel Energy Storage System)

  • 이정필;김한근
    • Progress in Superconductivity
    • /
    • 제14권1호
    • /
    • pp.52-59
    • /
    • 2012
  • In this paper, the robust superconductor flywheel energy storage system(SFESS) controller using $H_{\infty}$ control theory was designed to damp low frequency oscillation of power system. The main advantage of the $H_{\infty}$ controller is that uncertainties of power system can be included at the stage of controller design. Both disturbance attenuation and robust stability for the power system were treated simultaneously by using mixed sensitivity $H_{\infty}$ problem. The robust stability and the performance for uncertainties of power system were represented by frequency weighted transfer function. To verify control performance of proposed SFESS controller using $H_{\infty}$ control, the closed loop eigenvalue and the damping ratio in dominant oscillation mode of power system were analyzed and nonlinear simulation for one-machine infinite bus system was performed under disturbance for various operating conditions. The results showed that the proposed $H_{\infty}$ SFESS controller was more robust than conventional power system stabilizer (PSS).

On the robust adaptive linearizing control for unknown and analytic relay nonlinearity

  • Lee, Jae-Kwan;Abe, Ken-ichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 Proceedings of the Korea Automatic Control Conference, 11th (KACC); Pohang, Korea; 24-26 Oct. 1996
    • /
    • pp.177-180
    • /
    • 1996
  • The purpose of this paper is to design a robust adaptive control algorithm for a class of systems having continuous relay nonlinearity. This continuous relay nonlinearity can be defined as an analytic nonlinear function having unknown parameters and bounded unmodeling part. By this mathematical modeling, the whole system can be considered as a nonlinear system having unknown parameters and bounded perturbation. The control algorithm of this paper, RALC, can be constructed by robust adaptive law, feedback linearization, and indirect robust adaptive control. By this RALC, we can obtain that the output of given system can follow that of a stable reference linear model made by designer and the boundedness of all signals in closed-loop system can be maintained. Therefore, we can confirm a robust adaptive control for a class of systems having continuous relay nonlinearity.

  • PDF

System Modeling and Robust Control of an AMB Spindle : Part II A Robust Controller Design and its Implementation

  • Ahn, Hyeong-Joon;Han, Dong-Chul
    • Journal of Mechanical Science and Technology
    • /
    • 제17권12호
    • /
    • pp.1855-1866
    • /
    • 2003
  • This paper discusses an entire procedure for a robust controller design and its implementation of an AMB (active magnetic bearing) spindle, which is part II of the papers presenting details of system modeling and robust control of an AMB spindle. Since there are various uncertainties in an AMB system and reliability is the most important factor for applications, robust control naturally gains attentions in this field. However, tight evaluations of various uncertainties based on experimental data and appropriate performance weightings for an AMB spindle are still ongoing research topics. In addition, there are few publications on experimental justification of a designed robust controller. In this paper, uncertainties for the AMB spindle are classified and described based on the measurement and identification results of part I, and an appropriate performance weighting scheme for the AMB spindle is developed. Then, a robust control is designed through the mixed ${\mu}$ synthesis based on the validated accurate nominal model of part I, and the robust controller is reduced considering its closed loop performance. The reduced robust controller is implemented and confirmed with measurements of closed-loop responses. The AMB spindle is operated up to 57,600 rpm and performance of the designed controller is compared with a benchmark PID controller through experiments. Experiments show that the robust controller offers higher stiffness and more efficient control of rigid modes than the benchmark PID controller.

볼록 계수화법에 의해 설계된 견실한 H_$\infty$제어기의 비선형 보일러 시스템에 대한 적용 (Robust H_$\infty$ controller based on convex parametrization with application to nonlinear boiler system)

  • 황준하;최광진;권오규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1456-1459
    • /
    • 1997
  • In this paper, a control system using robust H.inf. controller based on convex parametrization is presented for nonlinear system with uncertainty. accounting for the time delay, noise and linearization error by frequency analysis, the suboptmal controller is designed to meet robust stability and performance for uncertainty. The desinged control system is applied to a nonlimear boiler moderl to test its performances.

  • PDF

2자유도 보상법에 의한 직류서보전동기의 강인한 속도제어시스템 구현 (Implementation of the robust speed control system for DC servo motor using TDF compensator method)

  • 김동완
    • 전기학회논문지P
    • /
    • 제52권2호
    • /
    • pp.74-80
    • /
    • 2003
  • In this paper, a robust two-degree-of-freedom(TDF) the speed control system using $H_{\infty}$ optimization method and real genetic algorithm is proposed for the robust stability and the robust performance in dc servo motor system. This control system composed of feedback and feedforward controller. The feedback(FB) controller with $H_{\infty}$ optimization method is designed for real genetic algorithm that is model matching problem using mixed sensitivity function. The feedforward(FF) controller with $H_{\infty}$optimization method is minimized the error between transfer function of the optimal model and the overall transfer function. The proposed robust two-degree-of-freedom speed control system is simulated to the dc servo motor. By the simulation, feedback controller can obtain the robust stability property and feedforward controller can obtain the robust performance property under modelling error. The performance of the dc servo motor is analyzed by the experiment setting. The validity of the proposed method is verified through being compared with pid(proportional integrated differential)control system design method for the dc servo motor.

비적응 모델 보상법에 의한 강성로보트의 강인한 동작제어 (Robust Motion Control of Robotic Manipulators with Nonadaptive Model-based Compensation)

  • ;유삼상
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제18권4호
    • /
    • pp.102-111
    • /
    • 1994
  • This article deals with the problem of designing a robust algorithm for the motion control of robot manipulator whose nonlinear dynamics contain various uncertainties. To ensure high performance of control system, a model-based feedforward compensation with continuous robust control has been developed. The control structure based on the deterministic approach consists of two parts : the nominal control law is first introduced to stabilize the system without uncertainties, then a robust nonlinear control law is adopted to compensate for both the resulting errors(or structured uncertainties) and unstructured uncertainties. The uncertainties assumed in this study are bounded by polynomials in the Euclidean norms of system states with known bounding coefficients. The presented control scheme is relatively simple as well as computationally efficient. With a feasible class of desired trajectories, the proposed control law provides sufficient criteria which guarantee that all possible responses of the closed-loop system are uniformly ultimately bounded in the presence of uncertainties. Therefore, the control algorithm proposed is shown to be robust with respect to the involved uncertainties.

  • PDF