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Abstract : The purpose of this paper is to design a robust adaptive control algorithm for a class of systems
having continuous relay nonlinearity. This continuous relay nonlinearity can be defined as an analytic nonlinear
function having unknown parameters and bounded unmodeling part. By this mathematical modeling, the whole
system can be considered as a nonlinear system having unknoun parameters and bounded perturbation. The control
algorithm of this paper, RALC, can be constructed by robust adaptive law, feedback linearization, and indirect
robust adaptive control. By this RALC, we can obtain that the output of given system can follow that of a
stable reference linear model made by designer and the boundedness of all signals in closed-loop system can be
matintained. Therefore, we can confirm a robust adaptive control for a class of systems having continuous relay
nonlinearity.
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1. INTRODUCTION

In many applications of control theories, we are con-
fronted with handling for continuous relay nonlinearity.
This property is usually caused by sensors and actuators,
which are essential components on control system perfor-
mances. Up to the present, this nonlinearity has been stud-
ied by linear method!! 23] This linear method is the method
that assumes the nonlinearity to be described by a linear
system with unmodeling part and then applies a proper lin-
ear control theory for the linearized system. In this method,
however, if the linearized system has large unmodeling part,
the closed-loop system having linear controller will easily
lead to instability. Therefore, in the presence of this nonlin-
earity, this defect is difficult to be derived from the linear
method. Furthermore, when parameter parts in modeling
are not completely known, any regulation design for whole
system may be complex increasingly.

Hence, such complex situations demand a new controller
which has a combination construction of adaptive control
theory!®? robust control theory“’ﬂ and nonlinear system
theory{"'s].

The main purpose of this paper is to design such a con-
troller for a class of systems having continuous relay nonlin-
earity. This continuous relay nonlinearity can be defined as
an analytic nonlinear function having unknown parameters
and unmodeling part. By this mathematical modeling, the
whole system can be considered as a nonlinear system hav-
ing unknown parameters and bounded perturbation. This
controller is studied under the following assumptions: 1) the
output and state vector of given system are observable, 2}
the reference input satisfies persistent excitation during pa-
rameter estimation, 3) the relay nonlinearity exists in ana-
lytic vector field, and 4) the slope range of relay nonlinearity
is known in advance.

The designed controller is called Robust Adaptive Lin-
earizing Controller, RALC, which is constructed by robust
adaptive lawl’»?], feedback linearization!*7) and indirect
adaptive controller®).

This paper is organized as follows. In Section 2, we de-
velop theories for design and analysis of RALC. In Section

3, we present simulation results for the proposed control
scheme. In Section 4, we summarize our conclusions and
outline future researches.

2. RALC

The continuous relay nonlinearity f..(-) can be consid-
ered as characteristic like the following figure, approxi-
mately.

continuous relay norlineartty

Figure 1: Continuous relay nonlinearity

As seen from Fig. 1, the nonlinearity can be classified as
C*® vector field and can be represented as an analytic non-
linear function frns(-) having unknown parameter matrix
a and bounded unmodeling part A f..(-):

fer(zp) =

Let us now describe the whole system including the non-
linearity by the following nonlinear differential equation:

a frRaf{Tp) + A fer(zp) (1)

Zp =

fn(zp) 4+ a frRof(zp) + Afer(zp) + gn(zp) v
hn(l:p) (2)

Yp =

where z, € R" is the observable state vector, y, € R is
the measured output, fn, gn, h, are observable C* vector
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fields, and v : ®Y — R is a bounded piecewise continuous
input.

The main object of our study in the rest of this paper is
that the output y, is required to track a desired output yim
of the following stable reference linear model:

Aim Tim +bim 1

‘i'lm

Yimn

T
Cim ZTim
or

Zim(3)

ylm(s) = G’m(s) r(‘q) = k‘m Hm(s)

r(s) (3)
where aim is a nxn asymptotically stable matrix.

In order to achieve such a purpose, we can construct the
following block diagram.
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Figure 2: Block diagram of RALC

In Fig. 2, the parameter estimator having robust adap-
tive lawt!*?] works as the part to estimate unknown parame-
ter a, the feedback linearization{*'*7] part replaces previous
nonlinear differential equation with an equivalent linear dif-
ferential equation, and the last part is the indirect robust
controller!® which calculates control parameters to satisfy
control goal.

The control algorithm developed in this paper, RALC,
can be explained as the following order.

2.1 Parameter Estimator

Using the Laplace transform, we can represent the system
(2) as the following s — domain form:

(8+l) Tni f_n+a f_‘Rnf+Afcr+g"U+fP (4)

where %, fn, fres, Afcr and g, describe s — domain repre-
sentations for z, fn, frRnf, Afer and gn, respectively.
This equation can be arranged as

1 (@ 1) U Frny 2517 + 30 )

+Af.]

()

Then we can define the following linear expression having

strictly proper SPR transfer functionf! Wi(s) = -1

g time
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invariant parameter matrix 6*7 {I a I), state variable

matrix w = [fn fras p)7, and piecewise continuous signal
input zo = gn v:

Ip

W(s)[0'T w+zo+ Afer] (6)

According to the linear expression, the estimate z, of z,
can be constructed as

"

Zp

W (s) [67 w + z0] (7)

where § is the estimate result of 8* at time t.
By the results, the estimation error €, and the normalized
estimation error € can be defined as the following form:

er = W (s) [e nf]
&p— Tp — W(s) [ nl]

W(s) [QST w—en— Afer)

(8)

€

il

il

()

where ¢ = 6 — §* and n, is called the parameter error and
the normalizing signal, respectively.
In the next place, we can transfer this transfer function
form into a state space form:
e ac e+b. (6T w—en? - Af.)

€ hc.e

(10)
where (h:, a., bc) is a minimal state representation of
W(s)=h. (sI —a.)! b..

The adaptive law for generating parameter estimate 6(t)
is developed by considering the next Lyapunov function:

TPc TI'\—l
€ e+¢ ¢

Vige) : ;

(11)

where [ = T'T > 0 and P. = PT > 0. The matrix P, is
constructed so as to satisfy the following relation:

-qq¢" ~vL
h.

P.a.+af P.
P, b,

(12)

for some vector q, L = LT >0 and a small constant v > 0.
Then, by choosing

p=6=-Tew-T w(t)b (13)

where w(t) > 0 is called the leakage and a signal to be
designed by

w(t) = le m| vo

(14)

where v, > 0 is a design constant, we can obtain ¢, § € L,
and V (¢, e) < 0.

2.2 Feedback Linearization

Let z,. be a singular point of f.. We shall assume
Afcr(tne) = 0, hn{zne) = 0, and that the following dif-
ferential equation:

Tp = fn(zp) = falzp) +a fruf(zp)
Yo = hn(zp) (15)
satisfies the condition
rank{d(LJf. ha(Zne): 0€5<n—-1}=n (16)

which implies the local observability condition!®#:*.



Then, we can define a neighborhood vector field k of z,.
satisfying

i 0 for0<j<n-—2
3 - =J =

If a global state space diffeomorphism 71¢:%]

1 = T(zn), T(0) =0, z; € R" (18)
where
ad™>?! ad™ =3
T (&)= @ " Kk0 @y Ko ... 0B, (2ne)

satisfies the following conditions

. [ad‘inn, ade- k]=0,for0<4,7<n~-1

. [ad'inrc, gn]=0,for0<i<n-—-2

. [ad'fnx, Afer] =0, for0<i<n—2,

the nonlinear differential equation (2) can be transformed

into the following equivalent linear differential equation hav-
ing another bounded perturbation A; € Loo:
Alzi+ A+ b u
yn =ci x (19)

z
vy =
2.3 Indirect Robust Controller

The objective of indirect robust controller!®® is to con-
trol the output of perturbation-free part for the equivalent
linear system (19) to track that of the stable reference linear
model (3) without influence of bounded perturbation.

In order to achieve such a goal, an indirect robust con-
troller can be constructed as follows

u')cl (t) = A wcl(t) + ¢ u(t)
Wea(t) = Awe(t)+eun(t)
u(t) = 8I(t) we(t) (20)
with
we(t) = [r(t), wli(t), w(t), wh]”

0(t) [ke(t), 821(8), Bea(t), 63(0)]"

where ke : Rt — R, 6.:(t) : RY 5 R*77, i =1, 2, 3are the
controller parameters which are determined at each time ¢,
and (A, ¢) is controllable.

Then an adaptive control lawl?*®! for control parameters
can be designed as the next differential equation:

k.c(t) = —sgn(kiyp) ey(t) r(t)
| 7 les(®)] Ae(®
Oc3(t) = —agn(kip) ey(t) w(t)
| ~ leu(6)] 8:a(0)
ba(t) = —sgn(kiyp) ey(t) walt)
| 7 ley(0)] €ar(t)
fc2(t) = —sgn(kip) ey(t) wea(t)
=7 ley(t)| 8ea(t) (21)
where
ey(t) = wi(t) —yim(t)
_ +1 ifr>0
sgn(z) = { -1 ifz<o0
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3. SIMULATION AND RESULTS

The system to be controlled has linear part with unknown
parameters and continuous relay characteristic fe,(-)

Ep1(t) = an zpi(t) +a12 zp2(t) + v(t)
Ep2(t) = az Tp2(t) + aze zp2(t) + fer(zpe)
yp(t) = 2 zp(t) + zp2(t) (22)

where z,(t) = [zp1(t) £p2(¢)]7 is the observable state vector,
v(t) is the input, y,(t) is the measured output, and a;, 1 =
1, 2 are unknown parameters given by a;; = —1.5, a), =
l, az) = 1 and a2 = —2.

If we assume the continuous relay nonlinearity as a non-
linear function frns(-) and a bounded unmodeling part

Afcr(')

fcr(l'p2) = a fRnf(sz’) +Afcr(1'p2) (23)

where

eb Tp2 _ eb Tp2

o) = (Gragopem
2
= (1_62b1p2+1
b = 1,

)

then given system can be considered as a nonlinear sys-
tem having unknown parameters, a and a,;, 1 = 1, 2 and
bounded perturbation A fer(-).

Here, the main purpose of RALC is to control the output
yp(t) to track the output yi,»(t) of a stable reference linear
model defined as follows

Timi1(t) = =2 zimi(t) — Tim2(t)
Tim2(t) = Zim1(t) — 3 zima2(t) +r ()
Yim(t) = Timi(t) + 2 Time(t) (24)

where r(t) = 5 sin(t) + 7 cos(3t).
We can know that, when RALC is not worked, y,(t)
does not track to yim(¢t) from Fig. 3.

responses yp and yim

Figure 3: yp(t) and yin (t) (RALC-x :
and dashed line = y;,,, (¢))

solid line = y, ()

According to RALC, some responses for closed-loop sys-
tem are shown in Fig.4 ~ Fig. 7, respectively. It is clear
that with RALC, the tracking error e, can be significantly
reduced.

4. CONCLUSIONS

By the controller of this paper, we can obtain the follow-
ing results.



responses a1 1(), a12(1). a21(1) & a22(1)
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Figure 4: System responses : parameter estimation re-
sult (1) - a11(t), a12(t), a21(t) and a22(t) (RALC-o :
o = all(t), + = alz(t), _ = agl(t), * = azz(t) and
solid line = ay,, a2, az; & az2)
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Figure 5: System response :
sult (2) - a(¢) (RALC-o :

line = a)

parameter estimation re-
solid line = a(t) and dashed

—
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Figure 6: System responses : closed-loop system result
(1) - w(t) and yim(t) (RALC-o : solid line = y/(t) and
dashed line = y,(t))
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Figure 7: System response : closed-loop system result

(2) - ey(t) (RALC-0)
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First, when estimated parameters are taken into feed-
back linearization part repeatedly, the whole system can
be transferred to an equivalent linear system with another
bounded perturbation form. Then, the robust adaptive con-
trol for the equivalent linear system having perturbation can
be possible, that is, the transfer function of perturbation-
free equivalent linear system can follow to that of a stable
reference linear model made by designer.

Second, while the output of closed-loop system is track-
ing that of given stable reference linear model, the bounded-
ness of all signals in estimator and controller can be satisfied.
Therefore, we can get a robust adaptive control for a class
of systems having continuous relay nonlinearity.

As a future research, there is an application for electronic
control unit, ECU, of automobile engine.
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