• Title/Summary/Keyword: Robust $H_{\infty}$ Control

Search Result 424, Processing Time 0.028 seconds

Mixed H$_2$H$\infty$and $\mu$-synthesis Approach to Coupled Three-Inertia Benchmark Problem (혼합 H$_2$H$\infty$$\mu$-이론을 이용한 벤치마크 문제의 해법)

  • 최연욱
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.22-22
    • /
    • 2000
  • This study investigates the use of mixed $H_2/H_{\infty}$ and $\mu$-synthesis to construct a robust controller for the benchmark problem. The model treated in the problem is a coupled three-inertia system which reflects the dynamics of mechanical vibrations. We, first adopt the mixed $H_2/H_{\infty}$ the to design a feedback controller K(s). Next, $\mu$-synthesis method is applied to the overall system to make use of structured parametric uncertainty.

  • PDF

Mixed $\textrm{H}_2/\textrm{H}_\infty$ Robust Control with Diagonal Structured Uncertainty

  • Bambang, Riyanto;Uchida, Kenko;Shimemura, Etsujiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.575-580
    • /
    • 1992
  • Mixed H$_{2}$/H$_{\infty}$ robust control synthesis is considered for finite dimensional linear time-invariant systems under the presence of diagonal structured uncertainties. Such uncertainties arise for instance when there is real perturbation in the nominal model of the state space system or when modeling multiple (unstructured) uncertainty at different locations in the feedback loop. This synthesis problem is reduced to convex optimization problem over a bounded subset of matrices as well as diagonal matrix having certain structure. For computational purpose, this convex optimization problem is further reduced into Generalized Eigenvalue Minimization Problem where a powerful algorithm based on interior point method has been recently developed..

  • PDF

Robust $H_{\infty}$ Controller for State and Input Delayed Systems with Structured Uncertainties (구조화된 불확실성과 상태와 입력에 시간지연이 있는 시스템을 위한 강인 $H_{\infty}$ 제어기)

  • Lee, Joon-Hwa;Moon, Young-Soo;Kwon, Wook-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.4
    • /
    • pp.338-342
    • /
    • 1997
  • 본 논문에서는 상태와 입력에 시간지연과 구조화된 불확실성이 있는 시스템을 위한 강인 H/sub .inf./ 제어기를 제안한다. 제안된 제안기는 시간지연의 크기에 관계없이 항상 불확실한 시스템을 안정화시키고, 또한 제한된 크기의 어떤 구조화된 불확실성에 대해서도 항상 폐루프 전달함수의 H/sub .inf./ 노옴의 크기를 주어진 레벨 이하로 줄인다. 제어기는 볼록 최적화 알고리즘을 이용한 LMI 문제를 풀어서 구한다.

  • PDF

H infinity Controller Design for the Reactor Power Control System

  • Lee, Yoon-Joon
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.79-84
    • /
    • 1996
  • The robust controller for the nuclear reactor power control system is designed. The reactor model is set up by use of the point kinetics equations and the singly lumped energy balance equations. Since the model is different from the actual plant, the controller which makes the system robust is necessary. The perturbation of the actual plant is investigated with respect to several possible sources of uncertainty. Then the overall system is configured into the two port model and the $H_{\infty}$ controller is designed. The loop shaping and the permissible control rod speed are considered as the design constraints. The designed $H_{\infty}$ controller provides the sufficient margins for the robustness, and the system output as well as the control input satisfy their relevant requirements.

  • PDF

Mixed $H_2/H_{\infty}$ Output Feedback Controller Design for PLL Loop Filter with Uncertainties and Time-delay (시간지연과 불확실성을 가지는 위상동기루프의 루프필터에 대한 혼합 $H_2/H_{\infty}$ 출력궤환 제어기 설계)

  • 이경호;한정엽;박홍배
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2589-2592
    • /
    • 2003
  • In this paper, a robust mixed H$_2$/H$\_$$\infty$/ output feedback control method is applied to the design of loop filter for PLL carrier phase tracking. The proposed method successfully copes with large S-curve slope uncertainty and a significant decision delay in the closed-loop that may exist In modern receivers due to a convolutional decoder or an equalizer. The objective is to design an output feedback controller which minimizes the H$_2$performance while satisfying the H$\_$$\infty$/ performance to guarantee the gain margin and phase margin for linear time invariant(LTI) polytopic uncertain systems. LMIs based approach is given to solve this problem. We can verify the H$\_$$\infty$/ performance satisfaction and minimize the phase detector error through the simulation result.

  • PDF

Vibration Suppression Control of 3-mass Inertia System by using LMI Theory

  • Choe, Yeon-Wook;Lee, Hyung-Ki
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.129-132
    • /
    • 2001
  • she purpose of this paper is to propose an approach to suppress the vibration of three-mass inertia system based on the LMI theory. and confirm its validity through simulations under the condition of parameter variation. First, the existing $H_{\infty}$ servo problem is modified to a structure to which the LMI theory can be applied by virtue of the interval model principle. By adopting this structure, we can divide given specifications fur the vibration suppression problem into $H_2$and $H_{\infty}$ performance criteria. The results of simulation for the three-mass inertia system show that the proposed design approach is quite effective.

  • PDF

Robust H Speed Controller Design for BLDC Motor (BLDC 모터의 강인한 H 속도 제어기 설계)

  • Jang, Sohyun;Jo, Nam-Hoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.10
    • /
    • pp.83-88
    • /
    • 2015
  • Due to low cost and high reliability, Brushless DC (BLDC) motors have been widely used in control applications such as robotics, aerospace and automobile. In the high performance control systems, it is very important to maintain the desired speed even in the face of parameter uncertainties, modeling errors, and disturbance signals. In this paper, we present an $H_{\infty}$ controller for the speed control of BLDC motors to achieve better performance of disturbance rejection. In particular, we discuss how to reduce an initial peaks of control input in the proposed $H_{\infty}$ controller. Some experimental results are provided to establish the effectiveness of the proposed method.

Application of $H{\infty}$ optimization to design of the monitor AGC for a hot strip mill plant (열간압연 Monitor AGC에의 $H{\infty}$ 최적화 기법의 적용)

  • 백기남;류석환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.248-251
    • /
    • 1991
  • A robust monitor AGC(Automatic Gauge Control) system for a hot strip mill plant of POSCO Is designed by minimizing the H.inf. norm of a so called mixed sensitivity function. In order to solve the mininizatlon problem, a polynomial approach proposed by Kwakernaak[5] is used. The controller performance is tested by a computer simulation under various circumstances.

  • PDF

Pressure Control of a Piezoactuator-Driven Pneumatic Valve System (압전 작동기로 구동 되는 공압 밸브의 압력제어)

  • Jo, Myeong-Su;Yu, Jung-Gyu;Choe, Seung-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.399-405
    • /
    • 2002
  • This paper proposes a new type of piezoactuator-driven valve system. The piezoceramic actuator bonded to both sides of a flexible beam surface makes a movement required to control the pressure at the flapper-nozzle of a pneumatic valve system. After establishing a dynamic model, an appropriate size of the valve system is designed and manufactured. Subsequently, a robust H$_{\infty}$ control algorithm is formulated in order to achieve accurate tracking control of the desired pressure. The controller is experimentally realized and control performance for the sinusoidal pressure trajectory is presented in time domain. The control bandwidth of the valve system, which directly represents the fastness, is also evaluated in the frequency domain.

Robust control of reheat-fan engine

  • Watanabe, R.;Kurosaki, M.;Uchida, K.;Shimemura, E.;Fujita, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.351-354
    • /
    • 1993
  • In this paper, reheat-fan engine is described as class of models constructed from nominal and uncertainty model for robust control. In this class of models, uncertainty model consists of structured and unstructured uncertainty, and each model is identified from nonlinear simulation using FFT and ML technique. Then, control requirements and augmented plant are specified. H$_{\infty}$ controller satisfying the control requirements is designed by using constant scaling matrix. Finally, efficacy of the H$_{\infty}$ controller is showed by computer simulation.n.

  • PDF