• Title/Summary/Keyword: Robust $H_{\infty}$

Search Result 475, Processing Time 0.027 seconds

Robust H_$\infty$ controller based on convex parametrization with application to nonlinear boiler system (볼록 계수화법에 의해 설계된 견실한 H_$\infty$제어기의 비선형 보일러 시스템에 대한 적용)

  • 황준하;최광진;권오규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1456-1459
    • /
    • 1997
  • In this paper, a control system using robust H.inf. controller based on convex parametrization is presented for nonlinear system with uncertainty. accounting for the time delay, noise and linearization error by frequency analysis, the suboptmal controller is designed to meet robust stability and performance for uncertainty. The desinged control system is applied to a nonlimear boiler moderl to test its performances.

  • PDF

Robust Nonlinear $H_2$/$H_{\infty}$Control for a Parallel Inverted Pendulum (병렬형 역진자와 비선형 $H_2$/H_{\infty}강인제어)

  • Han, Seong-Ik;Kim, Jong-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.1065-1074
    • /
    • 2000
  • A robust nonlinear $H_2$/$H_{\infty}$ control method for a parallel inverted pendulum with structured perturbation and dry friction is proposed. By the random input describing function techniques, the nonlinear dry friction is approximated into the quasi-linear system. Introducing the quadratic robustness theorem, the robust $H_2$/$H_{\infty}$ control system is constructed for the quasi-linear perturbed system. But it is difficult to design a controller due to the nonlinear correction term in Riccati equation. With some transformations on the Riccati equation containing nonlinear correction term, the design of the robust nonlinear controller can be done easily. Hence when the stiffness and mass of the parallel inverted pendulum vary in certain ranges, the proposed control scheme has the robustness for both the structured perturbation and dry friction. The results of computer simulation show the effectiveness of our proposed control method.

New Robust $H_{\infty}$ Performance Condition for Uncertain Discrete-Time Systems

  • Zhai, Guisheng;Lin, Hai;Kim, Young-Bok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.322-326
    • /
    • 2003
  • In this paper, we establish a new robust $H_{\infty}$ performance condition for uncertain discrete-time systems with convex polytopic uncertainties. We express the condition as a set of linear matrix inequalities (LMIs), which are used to check stability and $H_{\infty}$ disturbance attenuation level by a parameter-dependent Lyapunov matrix. We show that the new condition provides less conservative result than the existing ones which use single Lyapunov matrix. We also show that the robust $H_{\infty}$ state feedback design problem for such uncertain discrete-time systems can be easily dealt with using the approach. The key point in this paper is to propose a kind of decoupling between the Lyapunov matrix and the system matrices in the parameter-dependent matrix inequality by introducing one new matrix variable.

  • PDF

Design of a robust $H_{\infty}$ controller with regional stability constraints for uncertain linear systems (불확실한 선형 시스템의 지역 안정 제한 조건을 가진 강인한 $H_{\infty}$제어기의 설계)

  • 이문노;문정호;정명진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.747-750
    • /
    • 1996
  • This paper considers the problem of robust H$_{\infty}$ control with regional stability constraints via output feedback to assure robust performance for uncertain linear systems. A robust H$_{\infty}$ control problem and the generalized Lyapunov theory are introduced for dealing with the problem, The output feedback H$_{\infty}$ controller makes the controlled outputs settle within a given bound and the control input not to be saturated. The regional stability constraints problem for uncertain systems can be reduced to the problem for the nominal systems by finding sufficient bounds of variations of the closed-loop poles due to modeling uncertainties. A controller design procedure is established using the Lagrange multiplier method. The controller design technique was illustrated on the track-following system of a optical disk drive.ve.

  • PDF

Robust $\textrm{H}_\infty$ Control Design for the Space Station with Structured Parameter Uncertainty

  • Byun, Kuk-Whan;Bong-Wie;Dabid-Gaiier;John-Sunkel
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.431-441
    • /
    • 1991
  • A robust H$_{\infty}$ control design methodology and its application to a Space Station attitude and momentum control problem are presented. This new approach incorporates nonlinear multi-parameter variations in the state-space formulation of H$_{\infty}$ control theory. An application of this robust H$_{\infty}$ control synthesis technique to the Space Station control problem yields a remarkable result in stability robustness with respect to the moments-of-inertia variation of about 73% in one of the structured uncertainty directions. The performance and stability of this new robust H$_{\infty}$ controller for the Space Station are compared to those of other controllers designed using a standard linear-quadratic-regulator synthesis technique.que.

  • PDF

Reduced-order Parameter-dependent Robust $H_{\infty}$ Filtering for Discrete Uncertain Singular Systems (이산 불확실 특이시스템의 변수종속 차수축소 강인 $H_{\infty}$ 필터링)

  • Kim, Jong-Hae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.5
    • /
    • pp.59-65
    • /
    • 2011
  • In this paper, we present a reduced-order parameter-dependent robust $H_{\infty}$ filter design method for discrete-time singular systems with polytopic uncertainties. A BRL(bounded real lemma) for parameter-dependent singular systems is derived from a parameter-dependent Lyapunov function. On the basis of the obtained BRL, low order robust $H_{\infty}$ filter design method is presented by polytopic approach, new reduced-order method, and LMI(linear matrix inequality) technique. Finally, a numerical example is presented to illustrated the feasibility of the proposed method.

Depth and Course Controller Design of Autonomous Underwater Vehicles using H$_\infty$ Servo Control (H$_\infty$ 서보제어를 이용한 무인 수중운동체의 심도 및 방향제어기 설계)

  • 김인수;정금영;양승윤;조상훈;정찬희;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.215-215
    • /
    • 2000
  • In this paper, depth and course controllers of autonomous underwater vehicles using H$_{\infty}$ servo control are proposed. An H$_{\infty}$ servo problem is formulated to design the controllers satisfying a robust tracking property with modeling errors and disturbances. The solution of the H$_{\infty}$ servo problem is as follows: first, this problem is modified as an H$_{\infty}$ control problem for the generalized plant that includes a reference input mode, and then a sub-optimal solution that satisfies a given performance criteria is calculated by LMI(Linear Matrix Inequality) approach. The H$_{\infty}$ depth and course controllers ate designed to satisfy with the robust stability about the modeling error generated from the perturbation of the hydrodynamic coefficients and the robust tracking property under disturbances(wave force, wave moment, tide). The performances(the robustness to the uncertainties, depth and course tracking properties) of the designed controllers are evaluated with computer simulations, and finally these simulation results show the usefulness and application of the proposed H$_{\infty}$ depth and course control systems.

  • PDF

Robust Nonlinear H$\infty$ FIR Filtering for Time-Varying Systems

  • Ryu, Hee-Seob;Son, Won-Kee;Kwon, Oh-Kyu
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.3
    • /
    • pp.175-181
    • /
    • 2000
  • This paper investigates the robust nonlinear H$_{\infty}$ filter with FIR(Finite Impulse Response) structure for nonlinear discrete time-varying uncertain systems represented by the state-space model having parameter uncertainty. Firstly, when there is no parameter uncertainty in the system, the discrete-time nominal nonlinear H$_{\infty}$ FIR filter is derived by using the equivalence relationship between the FIR filter and the recursive filter, which corresponds to the standard nonlinear H$_{\infty}$ filter. Secondly, when the system has the parameter uncertainty, the robust nonlinear H$_{\infty}$ FIR filter is proposed for the discrete-time nonlinear uncertain systems.

  • PDF

쿨롱마찰을 갖는 유연 링크 로봇의 H$_2$ /H$_\infty$ 최적제어

  • 한성익;김종식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.401-405
    • /
    • 1996
  • A new method of nonlinear robust controller synthesis is introduced which is an extension of linear mixed $H_2/H_{\infty}$ control. This method guarantees robust stability fur hard nonlinearity and uncertainty of the plant. The method is applied to the control of a flexible link of robot with Coulomb friction. Simulation shows good performances with respect to the response and the robustness.

  • PDF

Robust Positioning Control of a Flexible beam using $H_2/H_\infty$ and $\mu$ theory ($H_2/H_\infty$$\mu$ 이론을 이용한 유연 빔의 위치제어)

  • 최연욱;이형기
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.133-136
    • /
    • 2000
  • The objective of this paper is to present a method for designing robust positioning control systems of a flexible arm using $H_2/H_{\infty}$ and $\mu$ theory. We begin with a description of the flexible arm based on the model identification method and discuss the derivation of the model uncertainty. The validity of the obtained model is confirmed experimentally Next, a robust controller is designed based on the $H_2/H_{\infty}$ and $\mu$ theory by which we can improve robustness of the entire system. On this occasion, we also propose a general plant formation suitable to $H_2/H_{\infty}$ control. Finally, the effectiveness of the proposed design method is verified through experimentation.

  • PDF