• Title/Summary/Keyword: Robust $H_{\infty}$

Search Result 475, Processing Time 0.026 seconds

Robust Control System Design for an AMB by $H_{\infty}$ Controller ($H_{\infty}$ 제어기에 의한 능동 자기 베어링 시스템의 강인한 제어계 설계)

  • Chang, Y.;Yang, J.H.
    • Journal of Power System Engineering
    • /
    • v.7 no.3
    • /
    • pp.48-53
    • /
    • 2003
  • This paper deals with the control of a horizontally placed flexible rotor levitated by electromagnets in a multi-input/multi-output (MIMO) active magnetic bearing(AMB) system. AMB is a kind of novel high performance bearing which can suspend the rotor by magnetic force. Its contact-free manner between the rotor and stator results in it being able to operate under much higher speed than conventional rolling bearings with relatively low power losses, as well as being environmental-friendly technology for AMB system having no wear and no lubrication requirements. In this MIMO AMB system, the rotor is a complex mechanical system, it not only has rigid body characteristics such as translational and slope motion but also bends as a flexible body. Reduced order nominal model is computed by consideration of the first 3 mode shapes of rotor dynamics. Then, the $H_{\infty}$ control strategy is applied to get robust controller. Such robustness of the control system as the ability of disturbance rejection and modeling error is guaranteed by using $H_{\infty}$ control strategy. Simulation results show the validation of the designed control system and the modeling method to the rotor.

  • PDF

Comparison of Control Performance in Electro.hydraulic Servo Systems (전기.유압 서보 시스템의 제어성능 비교)

  • Kim, D.T.;Park, K.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.3 no.2
    • /
    • pp.14-20
    • /
    • 2006
  • A controller design procedure for an electro-hydraulic positioning systems has been developed using $H{\infty}$ control. The generalized plant models and weighting function for multiplicative uncertainty modelling error was presented along with $H{\infty}$ controller designs in order to investigate the robust stability and performance. Both disturbance rejection and command tracking performances were improved with the $H{\infty}$ controller, and the better uniformity of time response is achieved across wide range of operating conditions than the PID, LQR and LQG control scheme. The multiplicative uncertainty case was specifically suited for the design of an electro-hydraulic positioning control systems using $H{\infty}$ control.

  • PDF

Multivariable $H_{\infty}$ disturbance rejection control for tandem cold mills (연속 냉간 압연기의 다변수 $H_{\infty}$ 외란제거 제어)

  • 김승수;김종식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.391-394
    • /
    • 1997
  • A H$_{\infty}$ control techniques with roll eccentricity filter is proposed to alleviate the effect of entry thickness variation and roll eccentricity occurred in rolling stand itself of tandem cold mills. A robust controller to the disturbances is designed using H$_{\infty}$ control techniques, which can reflect the input direction of disturbances and knowledge of disturbance spectrum in the frequency domain. And, non-standard H$_{\infty}$ control problem caused by selection of weight function having poles on j.omega. axis is discussed. The evaluation for the resultant controller composed by H$_{\infty}$ synthesis is done through computer simulations. The effectiveness of the proposed method is compared to those of the conventional LQ synthesis method and a feedforward controller against roll eccentricity, which was already studied.ied.

  • PDF

Dynamic Positioning Control of Floating Platform using $H_{\infty}$ Control Method ($H_{\infty}$ 제어법을 이용한 부유식 플랫폼의 동위치 제어)

  • 유휘룡;김환성;김상봉
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.153-161
    • /
    • 1996
  • This paper presents a design method of dynamic positioning control system for floating platform with rotatable and retractable thruster using $H_{\infty}$ control technique. The norm band of uncertainty is captured by multiplicative perturbation between nominal model and reduced order model. A controller robust to the uncertainty is designed applying $H_{\infty}$ synthesis. The control law satisfying robust stabillity and nominal performance condition is determined through the mixed sensitivity approach. The evaluation for the resultant controller obtained by $H_{\infty}$ synthesis is done through simulations of the closed loop system. The results of $H_{\infty}$ synthesis are compared to those of the traditional LQ synthesis method.

  • PDF

Robust Trajectory Control of Direct Drive Manipulator based on combining H$\infty$ Controller and Computed Torque Method (구동력 계산법 및 H$\infty$제어를 병용한 직접구동방식 머니퓰레이터의 퀘적제어)

  • Kim, C.K.;Kang, B.S.;Kwak, Y.K.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.10
    • /
    • pp.123-129
    • /
    • 1996
  • Computed torque method has been used for precise trajectory control of the robotic system that involves nonlinear dynamics. It is hard to know exact values of robot system parameters, and the robot arm receives umpredictable interference from the working environment. These disturbances, especially in a direct drive robot, are directly transmitted to actuating motor without reduction. Modelling error and distrubance can cause significant errors in a trajectory tracking problem. In this paper, we propose a new controller that $H_{\infty}$controller is conbined to robot system linearized by computed torque. Simula- tions are made for comparing the performance of the proposed controller with that of a nonlinear $H_{\infty}$ controller proposed by Chen and also computed torque method.hod.

  • PDF

Dynamic Positionning Control of Floating Platform Using H$_{\infty}$ Control Method (H$_{\infty}$제어법을 이용한 부유식 플랫폼의 동위치 제어)

  • 유휘룡;김성민;김상봉
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.437-442
    • /
    • 1996
  • The paper presents a design method of dynamic positioning control system for floating platform with rotatable and retractable thruster using $H_{\infty}$control technique. The norm band of uncertaintyis captured by multiplicative perturbation between nominalmodel and reduced order model. A controller robust to theuncertainty is designed applying $H_{\infty}$synthesis. The control law satisfying robust stability and nominal performance condition is determined through the mixed sensitivity approach. The evaluation for the resultant controller obtained by $H_{\infty}$synthesis is done through simulations of the closed loop system. The results of $H_{\infty}$synthesis are compared to those of the traditional LQ synthesis method. method.

  • PDF

$H_\infty$ Optimal tuning of Power System Stabilizer using Genetic Algorithm (유전알고리즘을 이용한 전력계통 안정화 장치의 강인한 $H_\infty$최적 튜닝)

  • Jeong, Hyeong-Hwan;Lee, Jun-Tak;Lee, Jeong-Pil;Han, Gil-Man
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.3
    • /
    • pp.85-94
    • /
    • 2000
  • In this paper, a robust H$\infty$ optimal tuning problem of a structure-specified PSS is investigated for power systems with parameter variation and disturbance uncertainties. Genetic algorithm is employed for optimization method of PSS parameters. The objective function of the optimization problem is the H$\infty$-norm of a closed loop system. The constraint of the optimization problem are based on the stability of the controller, limits on the values of the parameters and the desired damping of the dominant oscillation mode. It is shown that the proposed H$\infty$ PSS tuned using genetic algorithm is more robust than conventional PSS.

  • PDF

The hovering Flight Attitude Control of a Helicopter using Mixed $H_2/H_{\infty}$ Control Techniques ($H_2/H_{\infty}$ 혼합 제어 기법을 이용한 헬리콥터의 정지 비행 자세 제어에 관한 연구)

  • Lee, Myung-Wook;Ko, Kang-Woong;Min, Deuk-Gi;Park, Ki-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2599-2601
    • /
    • 2000
  • A helicopter control problem has been researched with many control theory. Especially, study of the hovering flight attitude control of a helicopter has been brisked since 60s with multivariable control theory. In this paper, the modeling is interpreted through the 6-freedom equation. To getting a entire equation, species of parameters and charts are adapted. The $H_2/H_{\infty}$ controller is acquired by mixing the $H_2$ control theory and the $H_{\infty}$ control theory. The $H_2$ control theory is reasonable one to increase the performance of a plant, and the $H_{\infty}$ control theory secures the robust stability. The simulation shows that the helicopter system is being controlled while maintaining performance and robust stability against perturbation.

  • PDF

Mixed $H_2/H_{$\infty}$ and $\mu$-synthesis Approach to the Coupled Three-Inertia Problem (혼합 $H_2/H_{$\infty}$$\mu$-설계이론을 이용한 3관성 문제의 해법)

  • Choe, Yeon-Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.11
    • /
    • pp.896-903
    • /
    • 2001
  • This study investigates the use of mixed $H_2/H_{$\infty}$ and $\mu$-synthesis to construct a robust controller for the benchmark problem. The model treated in the problem is a coupled three-inertial system that reflects the dynamics of mechanical vibrations. This kind of problem requires to be satisfied the robust performance (both in the time and frequency-domain specifications). We, first, adopt the mixed $H_2/H_{$\infty}$ theory to design a feedback controller K(s). Next, $\mu$-synthesis method is applied to the overall system to make use of structured parametric uncertainty. This process permits higher levels of controller authority and reduces the conservativeness of the controller. Finally, the feedforward controller is also used to improve the transient response of the output. We confirm that all design specifications except a complementary sensitivity condition can be achieved.

  • PDF

A Robust Track-following Control with Multiple Constraints Using Genetic Algorithm (유전자 알고리즘을 이용한 다중 제한 조건을 만족하는 강인 트랙 추종 제어)

  • Lee, Moon-Noh;Lee, Hong-Kyu;Jin, Kyoung-Bog
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.3
    • /
    • pp.275-283
    • /
    • 2012
  • This paper presents a design method of a robust tracking controller satisfying multiple constraints using genetic algorithm. A robust $H_{\infty}$ constraint with loop shaping is used to address disturbance attenuation with error limits and a loop gain constraint is considered so as not to enlarge the tracking loop gain and bandwidth unnecessarily. The robust $H_{\infty}$ constraint is expressed by a matrix inequality and the loop gain constraint is considered as an objective function so that genetic algorithm can be applied. Finally, a robust tracking controller can be obtained by integrating genetic algorithm with LMI approach. The proposed tracking controller design method is applied to the track-following system of an optical DVD recording drive and is evaluated through the experimental results.