• Title/Summary/Keyword: Robot science

Search Result 1,467, Processing Time 0.037 seconds

Robot Vision to Audio Description Based on Deep Learning for Effective Human-Robot Interaction (효과적인 인간-로봇 상호작용을 위한 딥러닝 기반 로봇 비전 자연어 설명문 생성 및 발화 기술)

  • Park, Dongkeon;Kang, Kyeong-Min;Bae, Jin-Woo;Han, Ji-Hyeong
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.1
    • /
    • pp.22-30
    • /
    • 2019
  • For effective human-robot interaction, robots need to understand the current situation context well, but also the robots need to transfer its understanding to the human participant in efficient way. The most convenient way to deliver robot's understanding to the human participant is that the robot expresses its understanding using voice and natural language. Recently, the artificial intelligence for video understanding and natural language process has been developed very rapidly especially based on deep learning. Thus, this paper proposes robot vision to audio description method using deep learning. The applied deep learning model is a pipeline of two deep learning models for generating natural language sentence from robot vision and generating voice from the generated natural language sentence. Also, we conduct the real robot experiment to show the effectiveness of our method in human-robot interaction.

Emotional Model Focused on Robot's Familiarity to Human

  • Choi, Tae-Yong;Kim, Chang-Hyun;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1025-1030
    • /
    • 2005
  • This paper deals with the emotional model of the software-robot. The software-robot requires several capabilities such as sensing, perceiving, acting, communicating, and surviving. and so on. There are already many studies about the emotional model like KISMET and AIBO. The new emotional model using the modified friendship scheme is proposed in this paper. Quite often, the available emotional models have time invariant human respond architectures. Conventional emotional models make the sociable robot get around with humans, and obey human commands during robot operation. This behavior makes the robot very different from real pets. Similar to real pets, the proposed emotional model with the modified friendship capability has time varying property depending on interaction between human and robot.

  • PDF

Questionnaire Results of Subjective Evaluation of Seal Robot at the National Museum of Science and Technology in Stockholm, Sweden

  • Shibata, Takanori;Wada, Kazuyoshi;Tanie, Kazuo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.16-19
    • /
    • 2003
  • This paper describes research on mental commit robot that seeks a different direction from industrial robot, and that is not so rigidly dependent on objective measures such as accuracy and speed. The main goal of this research is to explore a new area in robotics, with an emphasis on human-robot interaction. In the previous research, we categories robots into four categories in terms of appearance. Then, we introduced a cat robot and a seal robot, and evaluated them by interviewing many people. The results showed that physical interaction improved subjective evaluation. Moreover, a priori knowledge of a subject has much influence into subjective interpretation and evaluation of mental commit robot. In this paper, 133 subjects evaluated the seal robot, Paro by questionnaires in an exhibition at the National Museum of Science and Technology in Stockholm, Sweden. This paper reports the results of statistical analysis of evaluation data.

  • PDF

Design and Validation of Robot Curriculum in Education for the Gifted Elementary Students of Computer Science (초등정보과학영재를 위한 로봇교육과정의 설계 및 검증)

  • Lee, Jae-Ho;Nam, Gil-Hyun
    • Journal of Gifted/Talented Education
    • /
    • v.19 no.3
    • /
    • pp.669-695
    • /
    • 2009
  • In the 21st century, there will be a robot revolution. Only several years ago, industrial robots were the mainstream in the robot market; however, diverse type of robots are currently entering into our daily lives for various purposes, and the robot that thinks and behaves very similarly to human will appear in the near future. However, there is a critical view about the robot period. This means that the robot revolution will change even the framework of our entire society and human life style, and it is necessary to have robot education. It is necessary to start robot education in the elementary school curriculum with a view to enhancing interest in basic science and scientific technology and cultivating creative talents who may adapt themselves to a robotic society. However, there is no systematic robot curriculum owing to insufficient perception of the need of robot education and the educational utilization of robots. Under these circumstances, robot education is largely dependent on education for students with special talents and aptitudes run by private organizations. This paper conducted the following research in order to develop a robot curriculum in education for the gifted elementary students of computer science. First, the paper identified problems by analyzing the robot curriculum from a micro perspective after selecting three organizations that are relatively well perceived out of private organizations that operate robot education for the gifted elementary students of computer science. Second, the paper developed a robot curriculum in education for the gifted elementary students of computer science based on the framework of a robot curriculum run by private sector. Third, the validity of the robot curriculum developed in this paper was verified by a professional group comprising mainly persons in charge of robot curriculum development at private sector and lecturers for robot education for the gifted elementary students of computer science.

Intelligent Emotional Interface for Personal Robot and Its Application to a Humanoid Robot, AMIET

  • Seo, Yong-Ho;Jeong, Il-Woong;Jung, Hye-Won;Yang, Hyun-S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1764-1768
    • /
    • 2004
  • In the near future, robots will be used for the personal use. To provide useful services to humans, it will be necessary for robots to understand human intentions. Consequently, the development of emotional interfaces for robots is an important expansion of human-robot interactions. We designed and developed an intelligent emotional interface for the robot, and applied the interfaces to our humanoid robot, AMIET. Subsequent human-robot interaction demonstrated that our intelligent emotional interface is very intuitive and friendly

  • PDF

Development of high precision multi arms robot system consist of two robot arms and multi sensors (복수개의 로보트와 다중센서를 이용한 정밀조립용 로보트 시스템 개발에 관한 연구)

  • Lim, Mee-Seub;Cho, Young-Jo;Lee, Joon-Soo;Park, Jeung-Min;Kim, Kwang-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.422-424
    • /
    • 1992
  • In this paper, we are designed a hierachical system controller and builed a robot system for high precision assembly consisting in multi-arms and multi-sensor. For the control of a multi-arms robot system, the robot system are consisted of cell controller, station controller and device. The Operating System of a cell controller is VxWorks for real-time multi-processing. Using by C-language, we are proposed a multi-arms robot control language based a RCCL, and this control language is partially implemented and tested in multi-robot control system.

  • PDF

A task-oriented programming system (공정 지향적인 프로그래밍 시스템)

  • 박홍석
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.249-252
    • /
    • 1996
  • This paper presents an algorithmic approach used in the development of a task-level off-line programming system for the efficient applicaiton of robot. In the method, robot tasks are graphically described with manipulation functions. By applying robot language these graphic robot tasks are converted into commands for the robot. A programming example demonstrates the potentiality of task-oriented robot programming.

  • PDF

Development of Humanoid Robot HUMIC and Reinforcement Learning-based Robot Behavior Intelligence using Gazebo Simulator (휴머노이드 로봇 HUMIC 개발 및 Gazebo 시뮬레이터를 이용한 강화학습 기반 로봇 행동 지능 연구)

  • Kim, Young-Gi;Han, Ji-Hyeong
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.3
    • /
    • pp.260-269
    • /
    • 2021
  • To verify performance or conduct experiments using actual robots, a lot of costs are needed such as robot hardware, experimental space, and time. Therefore, a simulation environment is an essential tool in robotics research. In this paper, we develop the HUMIC simulator using ROS and Gazebo. HUMIC is a humanoid robot, which is developed by HCIR Lab., for human-robot interaction and an upper body of HUMIC is similar to humans with a head, body, waist, arms, and hands. The Gazebo is an open-source three-dimensional robot simulator that provides the ability to simulate robots accurately and efficiently along with simulated indoor and outdoor environments. We develop a GUI for users to easily simulate and manipulate the HUMIC simulator. Moreover, we open the developed HUMIC simulator and GUI for other robotics researchers to use. We test the developed HUMIC simulator for object detection and reinforcement learning-based navigation tasks successfully. As a further study, we plan to develop robot behavior intelligence based on reinforcement learning algorithms using the developed simulator, and then apply it to the real robot.

A Robot Motion Authoring Using Finger-Robot Interaction

  • Kim, Yoon-Sang;Seok, Kwang-Ho;Lee, Chang-Mug;Kwon, Oh-Young
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.2
    • /
    • pp.180-184
    • /
    • 2010
  • This paper proposes a robot motion authoring using finger-robot interaction. The proposed method is a user friendly method that easily authors (creates and controls) robot motion according to the number of fingers. The effectiveness of the proposed motion authoring method was verified based on motion authoring simulation of an industrial robot.

A new discrete-time robot model and its validity test

  • Lai, Ru;Ohkawa, Fujio;Jin, Chunzhi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.807-810
    • /
    • 1997
  • Digital control of robot manipulator employs discrete-time robot models. It is important to explore effective discrete-time robot models and to analyze their properties in control system designs. This paper presents a new type discrete-time robot model. The model is derived by using trapezoid rule to approximate the convolution integral term, then eliminating nonlinear force terms from robot dynamical equations. The new model obtained has very simple structure, and owns the properties of independence to the nonlinear force terms. According to evaluation criteria, three aspects of the model properties: model accuracy, model validity range and model simplicity are examined and compared with commonly used discrete-time robot models. The validity of the proposed model and its advantages to control system designs are verified by simulation results.

  • PDF