• 제목/요약/키워드: Robot manipulators

검색결과 499건 처리시간 0.029초

Development of User-Based Robot Simulation using VRML and Open Architecture (VRML 과 개방형구조를 이용한 사용자 기반의 로봇 시뮬레이션 개발)

  • Kim, Chang-Sei;Hong, Keum-Shik;Kim, Soo-Ho
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1201-1206
    • /
    • 2007
  • Robot simulation technique is essential not only for robot developers to design robotic systems but also for robot operators to predict robot motion, configure system layout, and increase robot ability. However, commercial robot simulation software such as ROBCAD, IGRIP, and so on are expensive and sometimes they are difficult to customize into industrial purpose programming for users. Therefore, user-based simulation programming is required to magnify the efficiency of robot system. In this paper, we show the methodology of developing user-based robot simulation programming using PC(personal computer), Open-Inventor, and Windows Programming. The developed programming has been successfully applied to welding robot systems of a shipbuilding industry. Also, the methodology presented here can be easily extended to simulate manipulators of other typed mechanism on user's PC.

  • PDF

Dynamic Neurocontrol Architecture of Robot Manipulators (로보트 매니퓰레이터의 동력학적 신경제어 구조)

  • 문영주;오세영
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • 제29B권8호
    • /
    • pp.15-23
    • /
    • 1992
  • Neural network control has many innovative potentials for fast, accurate and intelligent adaptive control. In this paper, two kinds of neurocontrol architectures for the dynamic control of robot manipulators are developed. One is based on a System Identification and Control scheme and the other is based on the Feedback-Error leaming scheme. Both of the proposed architectures use an inverse dynamic neurocontroller in parallel with a linear neurocontroller. The difference is that the first architecture uses the system identifier to get the signals used for training neurocontrollers, while the second architecture uses a properly defined energy function. Compared with the previous types of neurocontrollers which are using an inverse dynamic neurocontroller and a fixed PD gain controller, the proposed architectures not only eliminate the painful process of the fixed gain tuning but also exhibit superior peformances because the linear neurocontroller can adapt its gains according to the applied task. This superior performance is tested and verified through computer simulation of the dynamic control of the PUMA 560 arm.

  • PDF

Repetitive learning method for trajectory control of robot manipulators using disturbance observer

  • Kim, Bong-Keun;Chung, Wan-Kyun;Youm, Youngil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 Proceedings of the Korea Automatic Control Conference, 11th (KACC); Pohang, Korea; 24-26 Oct. 1996
    • /
    • pp.99-102
    • /
    • 1996
  • A novel iterative learning control scheme comprising a unique feedforward learning controller and a disturbance observer is proposed. Disturbance observer compensates disturbance due to parameter variations, mechanical nonlinearities, unmodeled dynamics and external disturbances. The convergence and robustness of the proposed controller is proved by the method based on Lyapunov stability theorem. The results of numerical simulation are shown to verify the effectiveness of the proposed control scheme.

  • PDF

Optimal motion control for robot manipulators

  • Shin, Jin-Ho;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국제학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.179-184
    • /
    • 1993
  • In this paper, an optimal motion control scheme is proposed for robot manipulators. A simple explicit solution to the Hamilton-Jacobi equation is presented. The optimization of motion control is based on the mininization of the torque term affecting the kinetic energy and the augmented error which has the first-order stable dynamics for the position and velocity tracking error. In the presence of parametric uncertainty, an adaptive control scheme using the optimal principle is proposed. The global stability of the closed-loop system is guaranteed by the Lyapunov stability approach, The effectiveness and feasibility of the proposed control schemes are shown by simulation results.

  • PDF

Simultaneous position and vibration control of the flexible object while using dual-arm manipulators

  • Yukawa, T.;Uchiyama, M.;Obinata, G.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국제학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.513-518
    • /
    • 1993
  • In this paper, we consider the handling f a flexible object using dual-arm manipulators. We choose both the side arms as rigid, and the objects to be manipulated as flexible. Our purpose is to realize position control for the flexible object while suppressing its vibration. In particular, the problem taken up here is the stability of the control system while manipulating the object. We propose that the traditional approach to investigate the robot system be expanded to include the object's characteristics (thus transferring the stability of the robot system into the full assembly system). We define a handling characteristic while manipulating the object. Finally, the relationship between the handling characteristic and the positional constraint condition in the hold position of the arms is studied while considering the stability of the control system.

  • PDF

Shock Absorbing Safe Mechanism Based on Transmission Angle of a 4-bar Linkage (4절링크의 전달각에 기초한 충격흡수식 안전 메커니즘)

  • 박정준;김병상;송재복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.180-185
    • /
    • 2004
  • Unlike industrial manipulators, the manipulators mounted on the service robots are interacting with humans in various aspects. Therefore, safety has been the important design issue. Many compliant robot arm designs have been introduced for safety. It is known that passive compliance method has faster response and higher reliability than active ones. In this paper, a new safe mechanism based on passive compliance has been proposed. Passive mechanical elements, specifically transmission angle of the 4-bar linkage, springs and shock absorbing modules are incorporated into this safe mechanism. This mechanism works only when the robot arm exerts contact force much more than the human pain tolerance. Validity of the safe mechanism is verified by simulations and experiments. In this research, it is shown that the manipulator using this mechanism provides higher performance and safety than those using other passive compliance mechanisms.

  • PDF

New Robust Control Fesigns of Robot Manipulators (로봇 매니퓰레이터의 새로운 견실제어기 설계)

  • ;Ye-Hwa, Chen
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.666-671
    • /
    • 1993
  • A new robust control law is proposed for uncertain rigid robots and two composite robust control laws for flexible-joint manipulators which contain uncertainties. The uncertainty, is nonlinear and (possibly fast) time-varying. Therefore, the uncertain factors such as imperfect modeling, function, payload change, and external disturbances are all addressed. Based only on the possible bound of the uncertainty, a robust controller is constructed for the rigid counterpart of the flexible-joint robot Some feedback control terms are then added to the robust control law to stabilize the elastic vibrations at the joints. To show that the proposed composite robust control laws are indeed applicable to flexible-joint robots, a singular perturbation approach and the stability study based on Lyapunov function are proposed.

  • PDF

Design of an new variable structure model following control system for robot manipulators

  • Park, Kang-Bark;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.324-327
    • /
    • 1994
  • In this paper, a new design method of variable structure model following control system(VSMFCS) for robot manipulators is proposed. The proposed controller overcomed reaching phase problem by using function augmenting scheme to the sliding surface. Therefore, it can be guaranteed that the overall system always has a robust property against parameter variations and external disturbances. Furthermore, the proposed controller does not use the model state, .chi.$_{m}$, different from other previous works. Regardless of not using the model state, the model following error dynamics, virtual dynamics, is shown to be globally exponentially stable. The efficiency of the proposed method has been demonstrated by an example.e.

  • PDF

Optimal configuration control for redundant robot manipulators-manipulability-based approach (여유 자유도 로봇의 최적 자세 제어)

  • Lee, Ji-Hong;Lee, Mi-Gyung;Lee, Young-Il;Yoo, Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.739-742
    • /
    • 1996
  • Several figures representing velocity transmission from joint space to task space are analyzed and compared with each other. The figures include velocity ellipsoid derived from Jacobian matrix, scaled velocity ellipsoid derived from normalized joint velocities, polytope derived by numerical scaling, and polytopes derived by linear combinations of Jacobian column vectors. The results show that the optimal directions given by the measures are not the same and the conventional velocity ellipsoid is not good choice as optimization measure as far as the moving direction is concerned. Simulation examples for 3 d.o.f. redundant robot manipulators in 2-dimensional task space are given for comparison study.

  • PDF

Visual servoing of robot manipulators using the neural network with optimal structure (최적화된 신경회로망을 이용한 동적물체의 비주얼 서보잉)

  • 김대준;전효병;심귀보
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.302-305
    • /
    • 1996
  • This paper presents a visual servoing combined by Neural Network with optimal structure and predictive control for robotic manipulators to tracking or grasping of the moving object. Using the four feature image information from CCD camera attached to end-effector of RV-M2 robot manipulator having 5 dof, we want to predict the updated position of the object. The Kalman filter is used to estimate the motion parameters, namely the state vector of the moving object in successive image frames, and using the multi layer feedforward neural network that permits the connection of other layers, evolutionary programming(EP) that search the structure and weight of the neural network, and evolution strategies(ES) which training the weight of neuron, we optimized the net structure of control scheme. The validity and effectiveness of the proposed control scheme and predictive control of moving object will be verified by computer simulation.

  • PDF