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Abstract

In this paper, we consider the handling of a flexible object
using dual-arm manipulators.  We choose both the side
arms as tigid, and the object to be manipulated as flexible.
Our purpose is to realize position control for the flexible
ohject while suppressing its vibration. In particular, the
problem taken up here is the stability of the control sys-
tem while manipulating the object. We propose that the
traditional approach 1o investigate the robot system be ex-
panded to include the object’s characteristics {thus trans-
ferting the stability of the robot system into the full as-
senthly system.) We define a handling characteristic while
manipulating the object. Finally, the relationship between
the haundling characteristic and the positional constraint
condition in the hold position of the armns is studied while
considering the stability of the control system.

1 Introduction

The problem addressed in this paper concerus the hold-
ing of an object by the dual-arm manipufators (Iig-
ure 1). The dnal-arm manipulators are made up of
links and the end cllectors. We coasider the object to
be a (lexible beany, So, we consider both the arms and
the object togethier as the enlire system, and make a
mathematical model for the combined system. This
model derives from the positional and velocily con-
siderations i the hold position.
stability, we need to understand both the robot sys-

For the system’s

tem’s stability, and also the mutual relation between
the robot systemn’s stability and the fnll assembly sys-
tem’'s slability. For the control system design, we con-
clude that the control input derived by the control
law can be visualized to be as thal of the actualors
of the dual-manipulators plus virtual actuators. So it
is clear that the stabilization problem {or the mixed
system (dual-arm-manipulators and the object) is not
the same as the stabilization of the object using only
dual-manipulators. Thus, to perform work by only the
dual-manipulators, we propose thal the control inpnt
from the virtnal actnators of the object be distributed

to the dual manipulators nsing the Jacobian matrix and
the inverse kinematics ol the robots. We next, consider
a cooperative control system design for the dual-arm
manipulators rom the point of view of the handling
characteristic.  The control system design from this
characteristic can take inlo account any uncertainty
of modelling crror of the manipulator and the object.
This method can also represent the mutual relation-
ship belwcen the mixed system’s uncertainty and the
positional boundary conditions at the handling point.
A bricf sumimary of our results and the organization of
the paper is as follows: In Section 2, we present the
manipulator’s equation of motion and the modelling
ol the object.  Section 3 gives the modelling of the
handling system. Section 4 gives the control method
for the mixed model presented in Section 3. Section 5
the cooperative control system design for the dual-arm
maunipulators from the handling characteristic point of
view is discussed. Finally, Section 6 the conclusions of
this work are given.

2 Kinematics and dynarmics

2.1 Manipulator’s equation of motion

Isach of the manipulators move in a plane. The sym-
bol L and R represent the lelt atm and the right arn.
Using Lagrange’s formulation, the dual-manipulator’s
equation of motion is written as follows:

J(0,)8,+C (01, 6,)+ DO, +P(8) =7 (1)

T80+ CriBr, 8p)+Dpbr+ Pr(8r) = 7i (2)

where 8, € R™™', 8 € R™" are the joint angle
vectors. J; € R™™ Jnp € R™MX™ are the iner-
tial force coellicient matrices. €, € R™™', Cp €
R™*Y are centrilugal force terms. D, € R™*™,
Dp € R™™™ are the damping frictional force coel-
ficients. P, e R™™', Py e R are ihe gravily
terms, 7, € R 7€ R are Lorque input vee-

tors.
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2.2 Modelling of the object

While
handling of the object by using the dual-arin manipu-
lators, we assume that both ends of the beam are {ree,
and control the dual-arms to regulate its vibration.

We choose the object to be a flexible heam.

2.2.1 The state-space description of the funda-

mental equation

The fundamental equation of the beam when external
forces and torques are also present is given as follows:

Mw(x,t) . Pw(r,t) 9t (1)
T TE

= flr,, )8(x — x,) + 7(z, )8 (x — 2,)  (3)

w(z,t) Zgb,('r (1)
where w(r,t) is the bending displacement at «, 4;(1)
is an unknown function, 4 is the cross-sectional-arca
of the beam, F it’s vertical elastic coeflicient, E* the
damping cocflicient, [ the arca moment of inertia;
7(7,, 1) is the
moment input at = x,, 6 is the delta function, a; is

[z, 1) is the force input at * = =,
the measured position, and [ is the beam lenglh. The

mode [unction and the boundary condition of the [ree
ends beam are giveu by:

l.,r . ki
+ cos sinh [ — + qm ;

#(x) =

cosh (

cosh{k;) — cos(k;) smh(/x ) — sin(k)

(5)

7oz 7olx) .
(*)*) - (9— =0 O
z=0,L X r=0,L

ki can be approximaled by:
b — cos(k;) cosh(k;) =0 . (7)

Using the Galerkin’s method, the state space descrip-
tion of the heam relative to the unknown function #;(f)
is obtained as:

z=Az+ By, vy,=Cz (8)

where

' o
z = [ mom N i ] e p!

o= [ Wt t) Wirg,) - | e o

up = [ flxat) 7(x,.t) ]T e It

A = block diag (A, 4y, Ay -] € R

=| Bl B Bl .| e

Cll Cl')
C=|Cu Cn € R
0 ]
A; = EL(k\Y B (kY R>?
YRV pA A\ L
0 I
Bi = ¢z(Tu_) _d’l(-ru) € szz
/)/1 ﬂ/‘

C, = [ ¢i(v,) 0] e R™.

2.2.2 Reduction of the object into a finite di-
mensional system

In this section, we describe the reduction of the ob-
ject beam.  The conirol theory for the linear fi-
nite dimensional system. cannot be applied to the
If the original systen

is approximated by some lower-order-modes neglecting

distributed-parameter system.

the higher-order-modes, the control system may gener-
ate a spill over and unstabilize. So we reduce the orig-
inal system using the stabilization method [1] for the
clastic vibrating system, which stabilizes the consid-
ered system in spite of modelling errors. The method
is as follows:

Let the state variable vector 2° be the stale response of
the system to the inpnt ui. lu the beam’s state-space
equation (8), the r dimensional vector Rz’ is given as
the lincar combination of the state response generated
be the new state variable
We apply the vector Rz lo
the following reduced model:

by the impulse input. let Z
for the reduced system,

.
2 - A:+Bu,. (W)
dl )

The error between the original model and the reduced
model is given as {ollows:

dz!
dl

d'=R— - (A,RZ + B,u}) . (10)

In the above cquation (10), the system matrices of the
reduced model are given as follows:

A, = RAW_R" (anlz"')“' ., B,=RB (11)
which minimizes the mean value ol the state respouse

W is
Choose 12

by the r lincarly independent impulse inputs.
the controllability Gramian matrix of (8).
as follows:

() 0 Pl ) 0
0 Bi(r) 0 Balry )

R=| ¢i(re,) 0 O2(Tay) 4]
0 v} 0 da(,)
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The state variahles (unknown function 7;(t)) of the sys-
tem (9) changes to thic state variables (sensor displace-
ment w(z,,, 1)) of the reduced model. This is desirable
in the control system design, hecause the displacement
detected by the sensor can be applied to the state {eed-

back control. We assume that the fecdback gain in the

closed loop is denoted by K. Then thie error A{p) be-
tween Lhe original model and the reduced one is given
by:

K {R(sI - AY'B~(sI - A,)"'B,}
KA(s) . (13)

Aly)

f

Therclore, to get the precise reduced model, it is im-
portant to select appropriate vahies for the elements of
R (sensor positions). Of course, it is possible to install
the sensor al the handling point.

3 Modelling of the
system

handling

In this section, we consider the constitution of the
nmixed model combining the dual-manipulators with
the object while satisfying the positional boundary con-
ditions at the handling point. Transforining equations
(1) & (2}, into the first order differential equations, and
combining these with equation (9}, we get.

0’ - o™ x1 J

uL —~1 . )

6, ~J7 (0 {Cu0L,00) + Pu(01)}
__2 - _ Tt T E)r.xTh——v—tf‘ -
- —gr; I 0 :n;;l “““““““

bn | ~J7'(0r) {Crl0r, 08) + Pr(0n)} |

[ Qmixm , ,
~ 0'lm1x2 02m|x2n;
A R 7 ]
HOTm B0
Qmexn: Th
02m7xn,- 02m;xl ~ -
A J7'(0r)
9,
[ A 0 o 6y
il DU VI U B
i 0‘2m7)(2m1 : 02mzxr Alf() ")”
A5
= W(z)+ B(x)r + A(x)z (11)

where

Omlxm; Im‘xnn
A[,n = (R ’JZ‘(OL)DI_,
o™ Xmig Ivnp(m?
AH() [ Omzxmz _‘J;}](/)L)DI( ]

and A(z) € ™™, B(z) € R™™" Wi(x) € R™"',
mo= 2my d 2mg . ono= ny + 1y + 20 Deline the

positional constraints to combine the equations of the
dual-nanipulators with that of the object:

flz)=0. (15)

Il the number ol constraints is k, dimension of f.(r)
is ¥'. It is possible to control if and only if the
{ollowing equation holds:
first,

k<n. (16)
(16) is a necessary condition for the existence of the
unobservable space capable of setting all the poles of
the whole system, and

k<n +ng. (17)

(17) is a necessary condition for the exisience of the
unobservable space capable of setting all the poles of
the dual-arm manipulators. The stale space equations
of Lhe system with the boundary conditions is given by:

&= A(z)z + Bla)r + W(z) + »‘%i;ﬁx (18)
where A is the unknown multiplier vector. The stan-
dard assumption for the boundary condition f(=) is
rank(d f(x)/dx) = k.

When the boundary coudition is met, note by (15) we
deduce that the following equation holds:

a ’}.
Y [ o

dz dx

From (18) and (19}, the unknown multiplier vector A
is given by:

oo T . T
X:*{(ﬂ> i)i} <Qf) [A(a:)m—}«B(:E)T-%—W(-T)L

gz ) dx Dz
(20)
Consequently, the state equation of the mixed modcl is
given by:

R P 2 "o\ af) " for\"
° = “\ie )") oz 3;)

x [A(z)e + B(z)r + W(a)] (21)
= Flo)[A@)z+ B)r+ W) . (22)

4 The control method for the
handling system
For the mixed model (22), let the control input be given
byv:
T = Qo)X+ Kay
—{K + Flx)A(z)}x — F(z)W (x)], (23)

then the closed system come to the PD servo system,
wlicre &4 1s the reference signal vector. To stabilize the
closed systemy, let the proportional gain K be given by:

K = diag{x,, Ky, -k}, ki >0 (24)
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Figure 1:
object.

where Q(x) is the Moore-Penrose inverse matrix of
F{x)B(x). Il we directly input 7 lo the iixed model,
this method is equivalent to the coutrol by the use of
the actuators of the dual-manipulators plus virtual ac-
tuators. As it is impossible to give directly the control
input to the object, the control is performed by only
the dual-manipulators, and it becomes feasible il and
only if (17) holds. The relationship between the gen-
eralized forces at the end effectors and that at each of
the joints is transferred as follows:

. T
T : .
Tra=J]p0n) [0 u] ] (25)
In the above equation, the control input to the object
is distributed to the dual arm’s joints. The description
is given in Iligure 1. Thus, the new control input = to
the mixed model is given by:

I Jle) o
=0 0 0fr. (26)
0 Jh(p) T

5 The cooperative control sys-
tem design from the stand-
point of handling

The above section mentivued a method lor the coop-
erative control system design {or the dual-arm manip-
ulators but it does not compensate for Lthe model un-
cerlainty of the manipulators aud the object. It is not
known how this uncertainty allects the equations of
the boundary conditions. A good method from the
standpoint of the system maybe bad for the object. In
this paper, to realize accurale handling, we study the
dynamic characteristic at the equilibrinm point while
satisfying Lhe boundary conditions.

5.1 'The design of the controller satis-
fying the boundary conditions

Deline the equilibrium point that satisfies the bound-

ary conditions & = E. Assuming that the following

condition hold at the equilibriuin point:
él; - éL — Om'”, 9[1 — éR — Om;xl7 E - 0’-“, (2—‘-)
we get the following conditions:

=)

5| _Xte=0 (28)
=T
where
0
JNOL)TL— I8P,
o= A Z+ B.u, e R™ . (29)

JRN0)Tr — JR'(8r)PR
Let X(€ R™™) denote the Moore-Penrose inverse of
Af(x)/dx. X is given by:
A= —X(x)lgze, {30)

and at the equilibriun poiut, il is necessary that both
(30) and the following equation holds:

f(@)g-z=0. (30

We next, consider the vicinity of the equilibrium point
as follows:

z(t) = T+ Az(t), A(t) = X+ AX(1), T(1) = F+AT(L).

(32)

First, we consider the left arm. The slate equation is
given by:

?L + A8, _
0, + A8,

0 I 614 + A8,
[ 0 —J;'(B,+ A6,)D, ] [b’L + A8, ]
0
* { —J7' (8, + A8,)
0 ,
* [ —INB+ AP, + A8)) ] - 39

] (FL+ ATy)

PL(EL + A8} is expanded by using Taylor scries.
To linearize the series, approximation until the sce-
ond term is done. Assume Lhat the following cquations
hold:
JL(gl, + AOL) = JL(GL) (34)
6,=6,=0. (35)
B, has no alfect on the expression. Thus, the following
cquation lolds:

a0, ] Jo 1 A8,
Aé, | T |0 —I7' @)D, || a8,
0 _
+ [ ‘J]:I(ab) ] (TI, + ATI/)
0 ]

- _apT
J;/'(OI,){PL(GL) 1 _’:Q&]
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The right arm’s and the object’s equations are got in
a similar way. The equation for the whole system are
given as [ollows:

r AL g xr 27y X e AH(:
LA Lo z
I Ozmgx’zm, ' g2maxr . An Agl?
Ay
B' ' Q2 x2 : (2max2n, ATL
o A
| 02m;xm . 02m7 x2 : B" ATR
9 f(x
2IZ) 4
IE
- — of@ [ ar
= AA [ ‘ ]
-+ |'B Er AN
=Adaz+|B T | au (37)

wlicre,

ZE Rmxm’ FE I{mxnY Ee Illxm, Au ¢ R(n+l)xl

Apr=
griaxmie Imm)‘"’],z
—_ T
- OP (8L, 15
~JLr(@Lr) %’.'I—l( L7) —J i r(@8)Dig
08y, r

0"'1.2’(7‘-1.7
JinBLr) |

If we desigh a fecdback system that achicves Ay =
CAx = 0, then it is possible to realize the bonndary
conditions al the equilibrium point. From CAy =0,
the following equation holds:

B r= [

CAAz+T[B T'lau=0. (3%)
As a result the following equation bolds:
Ay =0. (39)

However, it is diflicult to achieve (39) strictly. So we
use sliding mode control [2}.

Define the deviation AT al the equilibrium point as
folows:

Ae' = Az — AT . (10)

The error equation is given as follows:
Aé=AAe+ B C'laut Aaz . (1)

Define the switching plane as follows:
S5(1) = CAe(t) . (12)

S(1) plane is shown in Figare 2. Let W(€ RIFMxm
denote the Moore-Penrose inverse of [E é]] Let the

control inpul Au(/) he given by:

Aull)= —WF,Q,, (43)

Figure 20 S(1) plain.

then Q, is given by:

A ()] sgn{5i(1)
Aea{1)] sgn(.S, ]
Q. = ’A (’)I :ﬂ-'( l(f)) € R (44)
[ (D] sE0(50 1)

Deline the Lyapunov equation for S(1) as:
leor
VoSSt (45)

Differentiating V with time respect to V is given as
follows:
v o= 55"
= 54T
= S[AAe+|BC |Au+ AAz|)T
= |S|(A - F,)|Ae + AAz]'T'  (46)
where,
S=[SS - Sulve=[cres - en]l
1571 = (150152l -~ 15wl 175 le’l = (el leal - Jeml]"
To maintain Az at 0, define F, as [ollows:
F,=C'F (47)
V =|S|(CA-F)lae |+ C AAz|T  (48)
where I is positive definite_and C* is the Moore-
Penrose inverse of C. Choose F satislying the following
equation: _
CA<F. (19)
Accordingly, V reduces to:
V<o, (50)
and the stability near S = 0 is compensated for thus.

Let L be the Moore Penrose inverse of C [E ETJ,

Then the control input is given by:
Au=-L C A(de + AT) . (51)

Given the control input for § = 0 as (51), then
Az nears AE. I we let AF be the deviation {rom
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Figure 3. Stability margin in S plain.

stable
Ax=0

the equilibrinm output, then from (42) it follows that
Ay — AF.
Il Au is given by the following equation:

Au = ~W€+F6+Qy (5

i
)

where

[ &y —~ AT, sgn{ Si(1))

|Ay2 — AF,|sgn(Sa(t))
Q,= .

[{Ayr — A7 sgn(Si(1))

then it is possible to realize the control which satis-
fies the boundary conditions at the equilibrium point,
which realizes Ay — 0.

5.2 The cooperative control consid-
ered the handling characteristics

The stability margin in the equilibrium point depend
on the norm of F (Fignre 3), and the control input
mceasure increase with the norn larger. Our purpose
is to realize proper handling by changing the handling
characteristic {3], [4] to be within the range of stability
at the equilibrinm point and by increasing the_ control-
lability of the system.

In addition to the control input (52), we add another
inpul, Ao, and we use the following equations.

Aié = AAz+[B C" ]Au (59
Ax' = (I+ Ac)Ax 59)
where' Aa' is the stale error by the new input Az, De
fine f, as the sum of the forces applied to the object Ly
the end ellectors. Lel &(—f,) and {(—=/,) be the [unc-
tions dependent upon the material of the end cffectors,
represeuted by (2n 4+ 1) order polynomials.  Also lel
a and /1 be the distribution coeflicient of the handling
force for thie left arm and the right ann, respectively.
For example, a and ;7 can be chosen:

i |V —all)

O] =88

[{.1,,(0,,)n}.,, ] . [{Jn(an)r,f}.,. ‘ o
{Jll(gld)rl,,}'z,l ’ {Jn(gn)rn}“ RSN

Set up Ao as follows:

Ao = block diag
3 3 1 )
{ae(—_m [ o ] A1) [ 0o ] ,

3 3
u»ﬂ)c(—f.,)[ﬂ, 3}, (n~~)£(~f,>[é.., ‘,’]}

For the whole system’s stability by using this input, we
let I satisfy the following equation around § = 0:

|S(C A - F)lae’| £ C A(AT + Ad)]” <0 (56)
where

jae’| = [ ley = Ay ez ~ Aoy [em — Ao 7.
Finally, we choose F 1o satisfy (506) and compute Au
i (52), and determine the new input, as

wv=u+[I B'C |Au. (57)

6 Conclusions

We have proposed a handling method of a flexible oh-
ject using dual-arm manipulators. We regard both the
arms and the ohject together as the entire system and
use the positional constraints as the houndary condi-
tions. We also design the servo system to make the
entire system stable, and thus realize the handling of
the object using dual-arm manipulators. In our future
work, we purpose to decrease Lhe control iuput, for in-

+]{Aa.

stance to decrease the value of || F)|
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