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Abstracts A novel iterative learning control scheme comprising a unique feedforward learning controller and a disturbance
observer is proposed. Disturbance observer compensates disturbance due to parameter variations, mechanical nonlinearities,
unmodeled dynamics and external disturbances. The convergence and robustness of the proposed controller is proved by
the method based on Lyapunov stability theorem. The results of numerical simulation are shown to verify the effectiveness

of the proposed control scheme.
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1. INTRODUCTION

Most robots used in practice are designed to do same
work repeatedly. Learning control is a new control scheme
arises from the recognition of this feature. Learning con-
troller compensates nonlinearity and improves system per-
formance continuously without accurate modeling about
the system using previous information of repetitive oper-
ation. Motivated by the idea that robot can learn au-
tonomously from previous measurement data, Arimoto and
his research group[l] proposed a learning control scheme
based on a simple iteration rule. To optimize control input,
optimal learning control scheme was proposed|[3, 7]. Bondi
et al.[2] proposed learning control theory for robot manipu-
lators using high gain feedback. The robustness problems
of learning controller have been investigated by a number of
researchers[4].

To cancel out the disturbance and to make it easy to
design learning controller, we use a disturbance observer.
Ohnishi[6] proposed firstly the concept of disturbance ob-
server as compensating unknown disturbance. Umeno
et al.[8] redesigned disturbance observer using TDOF (Two-
degree of freedom) controller.

In this paper, combining disturbance observer and a
learning controller, we design a novel repetitive learning
control method which has the advantages of each control
scheme.

For the design of controllers, we assume the following
properties.

AssuMPTION 1 Following properties are satisfied in the op-
erations.

1. Every operation of the system s periodic and ends in
a finite time interval T 1.e., t € [0, T}].

2. The system dynamics is maintained through opera-
tions.

3. Each time the output trajectory y'(t) may contain
small high frequency noise £(1).
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Fig. 1 Block diagram of control system

Fig. 1 shows the overall controller structure which has dis-
turbance observer and learning controller. Each part will
be explained in the next sections.

2. DISTURBANCE OBSERVER

Consider the dynamics of rigid robot manipulators de-
scribed by

M(q)qg+n(q,q) = oy
where ¢ € R" is the vector of joint coordinates, M(q) €
R™*" is a positive definite inertia matrix, T € R" is a vector
of the generalized joint forces, and n(q, g) € R" is a vector
of nonliner forces written by

(2)

v(g,q) € R" is vector of centrifugal, Coriolis forces. Bq €
R™ is a vector of viscous frictional forces, g(q) € R™ is a vec-
tor of gravity forces, 7,4 € R" is a vector due to unmodeled
dynamics or unknown disturbance.

From Eq.( 1), the dynamic equations of motion of robot
manipulators can be expressed as

n(q,q) =v(q,q) + Bq+g(q) + Tua

Mn&+Bnq:T—Td (3)

Ta = AM&-’!*ABQ-{-T,M' (4)

where M, € R"*" is a positive definite inertia matrix of
nominal system, B, € R"*" is a positive definite viscous
term of nominal system, 7, € R" is a vector of total distur-
bance force, AM = M — M, € ®"*" is a matrix due to

with
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Fig. 2 Realizable form of disturbance observer

uncertainty in inertia, AB = B — B, € %" is a matrix
due to uncertainty in viscous friction, and 17,4 € R" is a
vector of the remained nonlinear forces.

The realizable form of disturbance observer for the SISO
system is shown in Fig.2[5]. In Fig.2, P(s) is the real
system, P, (s) is the nominal system, and Q(s) is a low-pass
filter.

From the block diagram in Fig. 2, following equation can
be obtained.

Y= Guy(s)u + Gayd + Gy (s)€ (5)
where
PP,
Gu = BAP-Po0 ©
PP,(1-Q)
G4 = R+(P-P)Q w
- PQ
If Q(s) = 1, then from Eq.(6)-(8)
Guy = Pn, Gy =0, Gegy = —1. 9)

This indicates that low frequency disturbance are canceled
and mismatch between real system and nominal system is
compensated for command signals in the low frequency.
And hence, disturbance observer make behavior of the real
system as a nominal system. On the other hand, if Q(s) = 0,
these transfer functions are written as

Guy = P, Ggy = P, Gg, =0. (10)
And we know that sensor noise is blocked, and the open loop
dynamics will be observed. Therefore, we design Q(s) to
remain close to 1 at low frequencies for disturbance rejection
and model uncertainties, and Q(s) to be very small in high
frequency region to reject sensor noise.

3. DESIGN OF LEARNING

CONTROLLERS

In low frequency, the dynamics of robot manipulator is given
by

M,j+Bn.g+7s=1 (11)

where ¥4 € R" is a vector due to nonlinearity of the com-
pensated system by disturbance observer, and we can know
that the dynamics given by

Tr = Mnéd + Bnqd + ‘T'd (12)
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are repeatable if the desired trajectory is periodic. There-
fore we assumed previously that the desired trajectory is
periodic with period T. This assumption allows us to write

) =7t -T) (13)

since the dynamics represented by 7,(¢) depend only on
periodic quantities.
Firstly, we design feedback control law as follows

75 = K,r+ Kye+ (M, - B,)é (14)

where K, € R**", K, € R**" are constant diagonal con-
trol gains, and the filtered tracking error is defined as

r=e+e. (15)

As using the property of the dynamics given by Eq.(12), we
design learning control law as follows

() =7t -T)+ Kir (16)

where K; € R"*" is a positive control gain. This learning
law is used to compensate for the repeatable dynamics 74(t).

Therefore the control law is formulate as
Te=11+ K.r+ Kpe+ (M, — B,)é. (17)

We can write the learning law given in Eq.( 16) in terms of
the learning error, which is defined as

7-(t) = 7. (t) — T1(t). (18)
From Eq.(16), we can formulate as follows
) -T) =7, O) -1t -T) - Kr. (19)

By utilizing the periodic assumption given by Eq.(13), we
can write Eq.(19) as

) -1) =7t -T)—7(t-T)— Kr (20)
which gives the learning error update rule
() =7t -T)— K;r. (21)

To analyze the stability of the controller given by
Eq.(17), we must form the corresponding error system.
First, we rewrite Eq.(11) in terms of r defined in Eq.(15).
That is, we have

Muyr=T1,—7 (22)

where T, is given as
To=Mn(G, + &)+ Bng + 7a. (23)

Adding and subtracting the term 7, on the right-hand side
of Eq.(22) yields

M,r=71.t)+T -1 (24)
where 7 is defined as
T = 14(t) — 7+ (1) (25)

This difference between 7,(¢) and 7-(t) can be written as
follows ~
T=(M, - By)e. (26)
Substituting the control law given by Eq.(17) into Eq.{ 24)
yields the error system
M.+ =71,()+7T — (11 + K.,r+ K,e+ (M, —B,)é) (27)
where, from the Eq.( 26) we can write this equation as

M7 = —K,r — Kye + 7,(t). (28)



1) Analysis of the stability

We now analyze the stability of the error system given by
Eq.(28) with the Lyapunov-like function

T?(U)‘T—,(a)dcr.

(29)

, 1
V 257‘ M7+ er e+2K

Differentiating Eq.(29) with respect to time vields

V= %rTMnerrTMnf"%-erTé
1 . ~
tage (FLO(6) = #(0 = T)7o(e = T) . (30)

Substituting the error system given by Eq.( 28) into Eq.( 30)
vields

V= —K.r'r-Kyp'e+Kyelet+r (1)
1 - T ~
Ik, (FT(OF(t) = 71 (¢ = T)#.(t = T)) . (31)

The second line in Eq.(31) can be written as follows

PTEA) + 511{—(+?(t)+,(t)—r (t = T)7 (t = T))
= —%KITTT. (32)

Therefore, we can simplify Eq.(31)

. 1

V=-KeeTe-(K,+ 5K,)rTr (33)
From Eq.(33), we can place an upper bound on ¥ in the
following manner

V< —Kpllel)® — (K. + Kt)IITH (34)
By rewriting Eq.(34) in the matrix form

V< -2'Qex (35)
where
_| Ko 0 _ | el
Q= 0 KL:+%K1] and:c_[HrH .

The matrix @ defined in Eq.(33) is positive definite, there-
fore V' will be negative semidefinite. By the Rayleigh-Ritz
Theorem, Eq.(35) can be written

V< = Anin{ QY Il (36)

Now, we detail the type of stability for the tracking error.
First note from Eq.(36) that we can place the new upper
bound on V'

“Amin QYT (37)
which can also be written as
[ ve < @ [Cir@ian o
0 Jo

Multiplying Eq.(38) by —1 and integrating the left-hand
side of Eq.(38) vields

1(0) = V(o) > /\mm{Q}/\ lir ()| do (39)
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Since 1" is negative semidefinite as delineated by Eq.(36),
we can state that 17 is a nonincreasing function that is upper
bounded by 17(0). By recalling that M (q) is lower bounded
as delineated by the positive-definite property of the iner-
tia matrix, we can state that 17 given in Eq.(29) is lower
bounded by zero. Since V" is nonincreasing, upper bounded
by 17(0). and lower bounded by zero, we can write Eq.( 39)
as

Ainl@) [ o) e < (40)
0

or

/ (o)l do < oc. (41)
Q

The bound delineated by Eq.(41) informs us that » € L3,
which means that the filtered tracking error r is bounded
by Eq.(41). From the definition of = given in Eq.(13), we
can state e and €& are bounded. Since e, e, r are bounded,
we can use Eq.(28) to show that 7. and hence V" in Eq.(33)
are bounded. Therefore 17 is lower bounded, v is nega-
tive semidefinite, and Vs bounded, we can use Barbalat’s
lemma to state that

lim V" =0 (42)
t—oc
which means that by the Rayleigh-Ritz Theorem
lim Anin {Q}|z|° =0 or lim z=0. (43)
t—o00 t—o0

To establish a stability result for the position tracking
error e, we establish the transfer function relationship be-
tween the position tracking error and the filtered tracking
error 7. From Eq.(15), we can state that

e(s) = H(s)r(s)

where s is the Laplace transform variable, and H(s) is writ-
ten as

(44)

H(s)=(sI+I)"" (45)

Since H(s) is a strictly proper, asymptotically stable trans-
fer function matrix and » € L3, we can state that

lim e =0. (46)
t—oc

And therefore
lim e = 0. 47)
t—o0

The result above informs us that the tracking error e and é
are asvimptotically stable.

4. NUMERICAL SIMULATIONS

Let us consider the manipulator in Fig. 3. The link masses,
inertias, lengths, and joint friction coeflicients for the simu-
lation are given in Table 1. For disturbance observer, nom-
inal systems are selected for each link as follows,

1 1

Pnl &) =
(5) = T5: 710 T 0ds+10°

P (s) = (48)

For feedback controller, following gain matrix is selected.

(2 ) w1 8)

0
300

300
0

20
0

0
20

K, (49)



Fig. 3 Two-link manipulator

Table 1 Kinematic and dynamic parameters

[ [ link1 | link2 |
mass(m) 10 kg 10 kg
inertia(J) 0.2 kg m’ 0.15 kg m”
length(l) 0.5 m 0.5 m
length(ly) 0.2m 0.2 m
friction(b) || 1.5 kg m*/s | 1.0 kg m*/s

a) Position error

b) Velocity error

Fig. 4 Cartesian error profile

a) X axis error

Fig. 5 3-dimensional Cartesian position error profile

a) X axis error

Fig. 6 3-dimensional Cartesian velocity error profile

a) Y axis error

a) Y axis error
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The gain K for learning controller is chosen as

20 0

K= ( 0 20 ) '
Circle of radius 25cm is to be traced in 2sec. 20 times
of repetitive operation is commanded. In the first opera-
tion, since there is no measured data previously, the learning
controller is not active in this case. Consequently, system
performance is dependent on mostly the disturbance ob-
server. The robot follows trajectory within small bounds.
Fig. 4 shows RMS(root mean square) error and average error
for number of iterations. Fig. 5, Fig. 6 shows 3-dimensional

Cartesian position and velocity errors respectively.

(50)

5. CONCLUSION

In this paper, a new repetitive learning controller with ro-
bustness property using disturbance observer was proposed.
By using disturbance observer, whole system behaved like
nominal system in low frequency, and high frequency noise
could be rejected. To acquire better tracking performance,
the learning controller was used as a prefilter for the desired
trajectory to compensate for the dynamic lag of the closed-
loop system and to extend the effective tracking bandwidth.

The convergence of learning controllers was proved based
on Lyapunov stability theorem. Through the numerical sim-
ulation, the proposed control scheme is verified.
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