• Title/Summary/Keyword: Robot Actuator

Search Result 358, Processing Time 0.04 seconds

Noise Measurement Method Development and Correlation Analysis According to Measurement Location of Small Unmanned Robot (소형 무인 로봇의 소음 측정법 개발 및 측정 장소에 따른 상관성 분석)

  • Ok, Jinkyu;Park, Eunjoo;Park, Minsu;Lee, Myungchun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.633-638
    • /
    • 2017
  • The small unmanned robot developed in this paper can perform tasks such as surveillance and reconnaissance in the battle field. The noise generated during the operation of the robot may expose the operation area. Therefore, in this study, we developed a method to quantitatively measure the noise of the developed small unmanned ground robot. The criteria for noise measurement in indoor and outdoor are presented. It was used for statistical verification method to verify the reliability of the developed noise measurement method. The noise was measured at different places, and the correlation was analyzed. Thus, we proposed a method to predict the noise level in the operation area where the robot is operated by the noise test data measured during the development process.

Dynamic Manipulability for Cooperating Multiple Robot Systems (공동 작업하는 다중 로봇 시스템의 동적 조작도)

  • 심형원
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.10
    • /
    • pp.930-939
    • /
    • 2004
  • In this paper, both dynamic constraints and kinematic constraints are considered for the analysis of manipulability of robotic systems comprised of multiple cooperating arms. Given bounds on the torques of each Joint actuator for every robot, the purpose of this study is to drive the bounds of task-space acceleration of object carried by the system. Bounds on each joint torque, described as a polytope, is transformed to the task-space acceleration through matrices related with robot dynamics, robot kinematics, object dynamics, grasp conditions, and contact conditions. A series of mathematical manipulations including the procedure calculating minimum infinite-norm solution of linear equation is applied to get the reachable acceleration bounds from given actuator dynamic constrains. Several examples including two robot systems as well as three robot system are shown with the assumptions of complete-constraint contact model(or' very soft contact') and insufficient or proper degree of freedom robot.

An study on the development of BLDC motor and Planetary gearheads for robot joint (로봇 관절용 고출력 BLDC 모터 및 유성 감속기 개발에 관한 연구)

  • Kim, Joo-Han;Rhyu, Se-Hyun;Chung, Jung-Kee;Sung, Ha-Kyeong;Lee, Jong-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.135-137
    • /
    • 2002
  • Many application in robotics, telecommunication, automation systems etc require powerful actuator. The powerful actuator have Speeds up to high speed and high output torque efficiencies. To accomplish a powerful actuator, these powerful motor have to be combined with gearheads of the same outer diameter. So, we have developed BLDC motor and planetary type gearheads as powerful actuator. The BLDC motor have advantages that compact structure, high efficiency, high reliability. The Planetary type gearheads have advantages that same-axle structure, high torque transmission, low noise in comparison with spur gearheads. In this study included BLDC motor and planetary type gearheads design, manufacture. This time study peformed for actuator of entertainment robot.

  • PDF

A Face Robot Actuated with Artiflcial Muscle (인공근육을 이용한 얼굴로봇)

  • 곽종원;지호준;정광목;남재도;전재욱;최혁렬
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.991-999
    • /
    • 2004
  • Face robots capable of expressing their emotional status, can be adopted as an efficient tool for friendly communication between the human and the machine. In this paper, we present a face robot actuated with artificial muscle based on dielectric elastomer. By exploiting the properties of polymers, it is possible to actuate the covering skin, eyes as well as provide human-like expressivity without employing complicated mechanisms. The robot is driven by seven types of actuator modules such as eye, eyebrow, eyelid, brow, cheek, jaw and neck module corresponding to movements of facial muscles. Although they are only part of the whole set of facial motions, our approach is sufficient to generate six fundamental facial expressions such as surprise, fear, anger, disgust, sadness, and happiness. Each module communicates with the others via CAN communication protocol fur the desired emotional expressions, the facial motions are generated by combining the motions of each actuator module. A prototype of the robot has been developed and several experiments have been conducted to validate its feasibility.

Modeling and Sliding-mode Control of a Robot Manipulator actuated by the Ball Screw (볼나사를 이용한 매니퓰레이터의 모델링 및 슬라이딩모드 제어)

  • 최형식;박용헌;정경식;이호식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.292-295
    • /
    • 2001
  • Conventional robots actuated by motors with the speed reducer such as harmonic drive had weakness in delivering loads, pressing, grinding, and cutting jobs. To overcome this, a new type of robot actuated by the ball screw was proposed. The ball screw is actuated by using four bar mechanism. The dynamics model of the robot was set up. The robot has parameter uncertainties and nonlinearlity due to the ball screw actuator. To coordinate the robot, the sliding-mode control was applied.

  • PDF

Development of Human-Sized Biped Robot (인체형 이족 보행로봇의 개발)

  • 최형식;박용헌;이호식;김영식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.15-18
    • /
    • 2000
  • We developed a human-sized BWR(biped walking robot) driven by a new actuator based on the ball screw which has high strength and high gear ratio. The robot overcomes the limit of the driving torque of conventional BWRs. Each leg of the robot is composed of three pitch joints and one roll joint. In all, a 10 degree-of-freedom robot with two balancing joints was developed. The BWR was developed to walk autonomously such that it is actuated by small torque motors and is boarded with DC battery and controllers. In the performance test, the BWR performed nice motions of sitting-up and sitting-down. Through the test, we could find capability of high performance in biped-walking.

  • PDF

Development of an autonomous biped walking robot

  • hyeung-sik choi;Oh, jeong-min;Kim, young-sik;Baek, chang-yul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.105.6-105
    • /
    • 2002
  • Contents 1We developed a new type of lower part of the human-sized BWR (biped walking robot) driven by a new actuator based on the ball screw which has high strength and high gear ratio. Each leg of the robot is composed of three pitch Joints and one roll joint. In all, a 8 degree-of-freedom robot was developed. A new type of actuator for the robot is proposed, which is composed of four bar link mechanism driven by the ball screw. The BWR was designed to walk autonomously by adapting small DC motors for the robot actuators and has an embeded controller system including host computer, batteries and motor drivers. In the performance test, we had basic stable walking data so far, but we f...

  • PDF

Development of Human-Sized Biped Robot (인체형 이족 보행로봇의 개발)

  • 최형식;박용헌;이호식;김영식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.267-267
    • /
    • 2000
  • We developed a human-sized BWR(biped walking robot) driven by a new actuator based on the ball screw which has high strength and high gear ratio. The robot overcomes the limit of the driving torque of conventional BWRs. Each leg of the robot is composed of three pitch joints and one roll joint. In all, a 10 degree-of-freedom robot with two balancing joints was developed. The BWR was developed to walk autonomously such that it is actuated by small torque motors and is boarded with DC battery and controllers. In the performance test, the BWR peformed nice motions of sitting-up and sitting-down. Through the test, we could find capability of high performance in biped-walking.

  • PDF

Development of Revolute joint Robot Manipulator with closed-chain structure (폐체인 구조의 다관절 로봇 매니플레이터의 개발)

  • 오정민;백창열;최형식;김명훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.540-543
    • /
    • 2002
  • Conventional robot manipulators actuated by motors with the speed reducer such as the harmonic drive have weakness in the load capacity, since the speed reducer does not have enough strength. To overcome this, we proposed and constructed a new type of the robot actuator which is four-bar-link mechanism driven by the ball screw. We developed a new type of a revolute-jointed robot manipulator composed of four axes. The base axis is actuated with conventional speed reducer, but the others are actuated by the proposed actuators. We analyzed the mechanism of the actuators of the robot joints, and developed the dynamics model. The dynamics are expressed in the joint coordinates, and then they are mapped into the sliding coordinates of the ball screw. The structure specifications of the manipulator shown.

  • PDF