• Title/Summary/Keyword: Road Traffic Accident

Search Result 551, Processing Time 0.025 seconds

Comparative Study of PSO-ANN in Estimating Traffic Accident Severity

  • Md. Ashikuzzaman;Wasim Akram;Md. Mydul Islam Anik;Taskeed Jabid;Mahamudul Hasan;Md. Sawkat Ali
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.95-100
    • /
    • 2023
  • Due to Traffic accidents people faces health and economical casualties around the world. As the population increases vehicles on road increase which leads to congestion in cities. Congestion can lead to increasing accident risks due to the expansion in transportation systems. Modern cities are adopting various technologies to minimize traffic accidents by predicting mathematically. Traffic accidents cause economical casualties and potential death. Therefore, to ensure people's safety, the concept of the smart city makes sense. In a smart city, traffic accident factors like road condition, light condition, weather condition etcetera are important to consider to predict traffic accident severity. Several machine learning models can significantly be employed to determine and predict traffic accident severity. This research paper illustrated the performance of a hybridized neural network and compared it with other machine learning models in order to measure the accuracy of predicting traffic accident severity. Dataset of city Leeds, UK is being used to train and test the model. Then the results are being compared with each other. Particle Swarm optimization with artificial neural network (PSO-ANN) gave promising results compared to other machine learning models like Random Forest, Naïve Bayes, Nearest Centroid, K Nearest Neighbor Classification. PSO- ANN model can be adopted in the transportation system to counter traffic accident issues. The nearest centroid model gave the lowest accuracy score whereas PSO-ANN gave the highest accuracy score. All the test results and findings obtained in our study can provide valuable information on reducing traffic accidents.

Prevention of Traffic Accident using AHP Rules (AHP를 이용한 교통사고 예방)

  • Jin, Hyun-Soo
    • Proceedings of the KAIS Fall Conference
    • /
    • 2008.05a
    • /
    • pp.157-159
    • /
    • 2008
  • This paper has been studied traffic accident using intelligence prediction algorithm. and wish to prevent accident by guiding in 2 km ahead the accident that occur in fog section and a snow-covered road, sudden roadworks and sharp curve section, etc and removing fog and snow automatically using the ubiquitous and intelligence technique. If we can predict of traffic accident, we can prevent the many traffic accident. In this paper, we present neural network approach for prediction of traffic accident. Computer simulation results prove that reducing the average vehicle waiting time which proposed considering prevention of traffic algorithm for optimal traffic cycle is better than fixed signal method which dose not using prevention of traffic algorithm.

  • PDF

International Comparative Analysis of Traffic Safety Indicators related to Road Traffic Accidents (도로교통사고 안전지표의 국제간 비교분석 평가)

  • Kim, Sang Gu
    • Journal of Digital Convergence
    • /
    • v.17 no.9
    • /
    • pp.429-438
    • /
    • 2019
  • This study was to evaluate the level of traffic safety related to domestic traffic accidents by analyzing the international comparison of road traffic accident indicators and to set goals and directions of traffic accidents in Korea in the future. The research procedure was as follows: First, population, number of registered vehicles, roadway length, vehicle kilometers, injury accidents, fatalities, injuries were collected in 32 OECD countries. Second, we determined Korea's traffic safety rankings through international comparison of traffic accident rate. Finally, we analyzed the level of traffic safety by comparing Korea with the 7 advanced countries with the traffic accident rate per vehicle kilometers. The accident rate in Korea was greater than two times higher than those of the seven major developed countries, which showed that the level of traffic safety in Korea implied very low. Target values for domestic accidents were proposed based on the accident rate.

Developing the Traffic Accident Prediction Model using Classification And Regression Tree Analysis (CART분석을 이용한 교통사고예측모형의 개발)

  • Lee, Jae-Myung;Kim, Tae-Ho;Lee, Yong-Taeck;Won, Jai-Mu
    • International Journal of Highway Engineering
    • /
    • v.10 no.1
    • /
    • pp.31-39
    • /
    • 2008
  • Preventing the traffic accident by accurately predicting it in advance can greatly improve road traffic safety. The accurate traffic accident prediction model requires not only understanding of the factors that cause the accident but also having the transferability of the model. So, this paper suggest the traffic accident diagram using CART(Classification And Regression Tree) analysis, developed Model is compared with the existing accident prediction models in order to test the goodness of fit. The results of this study are summarized below. First, traffic accident prediction model using CART analysis is developed. Second, distance(D), pedestrian shoulder(m) and traffic volume among the geometrical factors are the most influential to the traffic accident. Third. CART analysis model show high predictability in comparative analysis between models. This study suggest the basic ideas to evaluate the investment priority for the road design and improvement projects of the traffic accident blackspots.

  • PDF

A Visualization of Traffic Accidents Hotspot along the Road Network (도로 네트워크를 따른 교통사고 핫스팟의 시각화)

  • Cho, Nahye;Jun, Chulmin;Kang, Youngok
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.1
    • /
    • pp.201-213
    • /
    • 2018
  • In recent years, the number of traffic accidents caused by car accidents has been decreasing steadily due to traffic accident prevention activities in Korea. However, the number of accidents in Seoul is higher than that of other regions. Various studies have been conducted to prevent traffic accidents, which are human disasters. In particular, previous studies have performed the spatial analysis of traffic accidents by counting the number of traffic accidents by administrative districts or by estimating the density through kernel density method in order to identify the traffic accident cluster areas. However, since traffic accidents take place along the road, it would be more meaningful to investigate them concentrated on the road network. In this study, traffic accidents were assigned to the nearest road network in two ways and analyzed by hotspot analysis using Getis-Ord Gi* statistics. One of them was investigated with a fixed road link of 10m unit, and the other by computing the average traffic accidents per unit length per road section. As a result by the first method, it was possible to identify the specific road sections where traffic accidents are concentrated. On the other hand, the results by the second method showed that the traffic accident concentrated areas are extensible depending on the characteristic of the road links. The methods proposed here provide different approaches for visualizing the traffic accidents and thus, make it possible to identify those sections clearly that need improvement as for the traffic environment.

Urban and Rural Roundabout Accident Occurrence Models (도시 및 지방 회전교차로 사고 발생 모형)

  • Beck, Tea Hun;Lim, Jin Kang;Park, Byung Ho
    • International Journal of Highway Engineering
    • /
    • v.17 no.5
    • /
    • pp.39-46
    • /
    • 2015
  • PURPOSES: The operational characteristics of roundabouts are generally influenced by location as well as traffic volume. The goal of this study is to develop urban and rural roundabout accident models and to discuss safety improvement guidelines based on the model. METHODS : To analyze accidents, count data models are utilized in this study. This study used accident data from 2010 to 2013 for 56 roundabouts collected from the Traffic Accident Analysis System (TASS) of Road Traffic Authority. Poisson and negative binomial regression models were developed for this study using NLOGIT 4.0. RESULTS : The main results are as follows. First, the hypotheses that there are distributional differences in the number of accidents and injuries/fatalities among rural and urban roundabouts were accepted. Second, Poisson and negative binomial regression accident models, which were all statistically significant, were developed. Seven independent variables, which were statistically significant, were adopted. Third, the common variable of models was evaluated to be traffic volume. CONCLUSIONS : This study developed two negative binomial roundabout accident models and suggested some accident reduction strategies. The results are expected to give some implications to the safety improvement of roundabout.

A Study on Factors that Influence Traffic Accident Severity in Road Surface Freezing (결빙구간의 교통사고 심각도 영향 요인 연구)

  • Lee, Sang Jun
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.6
    • /
    • pp.150-156
    • /
    • 2017
  • A frozen road surface increases traffic accidents during the winter season. Hence, information on easily-frozen road sections and their specificities are required to prevent traffic accidents. Frozen road surfaces are determined by equipment measuring road surface temperatures. However, there are limitations in investigating the entire road network. Therefore, it is imperative to develop new methods that effectively determine road surface freezing risks. Meteorologically, road surfaces are frozen when the actual temperature cools down to the dew point temperature. Under this condition, there is likely to be frost if relative humidity reaches 100% and frozen road surfaces as the temperature gets lower. Meteorological characteristics give us an alternative to a direct measurement road surface temperature to estimate risks of road surface freezing. Based on the clues, the relationship between severity of traffic accidents and temperature changes is empirically investigated using Paju weather data. The results reveal that as the temperature gets lower and changes in current temperature are relatively small, the severity of traffic accidents become higher. In addition, the same is true when the difference between current temperature and the dew point temperature is relatively small, as it increases possibilities of road surface freezing. Future studies must investigate how current temperature and the dew point temperature affect road surface freezing and thereby establish a time-space scope to estimate possible road surface freezing sections using only weather and road material type data. This would provide invaluable information for predicting and preventing frozen road accidents based on weather patterns.

Development of the U-turn Accident Model at 4-Legged Signalized Intersections in Urban Areas (도시부 4지 신호교차로 유턴 사고모형 개발)

  • Kang, JongHo;Kim, KyungWhan;Ha, ManBok;Kim, SeongMun
    • International Journal of Highway Engineering
    • /
    • v.16 no.2
    • /
    • pp.119-129
    • /
    • 2014
  • PURPOSES : The purpose of this study is to develop the U-turn accident model at 4-legged signalized intersections in urban areas. METHODS : In order to analyze the characteristics of the accidents which are associated with U-turn operation at 4-legged signalized intersections in urban areas and develop an U-turn accident model by regression analysis, the tests of overdispersion and zero-inflation are conducted about the dependent variables of number of accidents and EPDO (Equivalent Property Damage Only). RESULTS : As their results, the Poisson model fits best for number of accident and the ZIP (Zero Inflated Poisson) fits best for EPOD, the variables of conflict traffic, width of opposing road, traffic passing speed are adopted as independent variable for both models. The variables of number of bus berths and rate of U-turn signal time at which the U-turn is permitted are adopted as independent variable only for EPDO. CONCLUSIONS : These study results suggest that U-turn would be permitted at the intersection where the width of opposing road is wider than 11.9 meters, the passing vehicle speed is not high and U-turn operation is not hindered by the buses stopping at bus stops.

Traffic Accident Detection Based on Ego Motion and Object Tracking

  • Kim, Da-Seul;Son, Hyeon-Cheol;Si, Jong-Wook;Kim, Sung-Young
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.10 no.1
    • /
    • pp.15-23
    • /
    • 2020
  • In this paper, we propose a new method to detect traffic accidents in video from vehicle-mounted cameras (vehicle black box). We use the distance between vehicles to determine whether an accident has occurred. To calculate the position of each vehicle, we use object detection and tracking method. By the way, in a crowded road environment, it is so difficult to decide an accident has occurred because of parked vehicles at the edge of the road. It is not easy to discriminate against accidents from non-accidents because a moving vehicle and a stopped vehicle are mixed on a regular downtown road. In this paper, we try to increase the accuracy of the vehicle accident detection by using not only the motion of the surrounding vehicle but also ego-motion as the input of the Recurrent Neural Network (RNN). We improved the accuracy of accident detection compared to the previous method.

The Setting in the Range of Traffic Accident on the Crosswalk (횡단보도의 교통사고 범위 설정에 관한 연구)

  • Kim, Jang-Wook;Jung, Min-Young;Kang, Dong-Soo;Hong, Ji-Yeon;Lee, Soo-Beom
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.4
    • /
    • pp.120-126
    • /
    • 2011
  • Under the current law or system, the range of traffic accident on the crosswalk does not reflect the characteristics of traffic accident and the pedestrian's walking pattern. Thus, this study conducted a video recording survey on the 250 spots which are high to traffic accident rate of pedestrian-vehicle to reset the range of traffic accident on or near the crosswalk considering the characteristics of traffic accident and the pedestrian's walking pattern. Based on the collected data through a video recording survey, this study analyzed the pattern of pedestrians and extracted the variables influenced in the pedestrian's walking pattern. After conducting the regression analysis, this study made the model of measuring the range of traffic accident on the crosswalk. Through all processes these, this study reset the range of traffic accident on the crosswalk which could minimize the disadvantages of pedestrian when they have an accident on the crosswalk and ensure the right of way of pedestrian.