• Title/Summary/Keyword: Rise Ratio

Search Result 1,041, Processing Time 0.025 seconds

The Effect of Changes in Polymerization Conditions of Orthodontic Acrylic Resin on Maximum Load (Orthodontic Acrylic Resin의 중합조건 변화가 최대하중에 미치는 영향)

  • Lee, Gyu Sun
    • Journal of Technologic Dentistry
    • /
    • v.35 no.2
    • /
    • pp.127-136
    • /
    • 2013
  • Purpose: In order to find out the impact of changes in polymerization conditions of orthodontic acrylic resin on maximum load. Methods: While maintaining mixing ratio 3:1 of polymer and monomer in spray-on way in the production condition of polymerization temperature $25^{\circ}C$ or $37^{\circ}C$ for 10 minutes or 30 minutes of polymerization time by pressure $3kfg/cm^2$ or $6kfg/cm^2$ in the lab maintaining $25^{\circ}C$ of room temperature, the change in maximum load rise rate was tested by producing 5 acrylic resin specimens for orthodontics per group to meet the standards of $25mm{\times}2mm{\times}2mm$ and using INSTRON with the 3rd bar 2mm in diameter and parallel support bending device of $15{\pm}0.1mm$ as test equipment showing 30.00mm/min of crosshead speed, $50{\pm}16$ N/min of load ratio in the laboratory of $24^{\circ}C$ room temperature and as a result, the following results were obtained. Results: 1. When increasing pressure from $3kfg/cm^2$ to $6kfg/cm^2$, maximum load was lowered by -4.285%. 2. When increasing polymerization time from 10 minutes to 30 minutes, maximum load rose by 3.848%. 3. When increasing polymerization temperature from $27^{\circ}C$ to $37^{\circ}C$, maximum load rose by 5.854%. Conclusion: Considering the above test results that polymerization time and polymerization temperature when polymerizing acrylic resin for orthodontics according to changes in working conditions had an impact on the rate of rise of maximum load values but the rate of rise was lowered when increasing pressure from $3kfg/cm^2$ to $6kfg/cm^2$, we came to a conclusion that high pressure more than necessary does not affect the rate of rise of maximum load.

A Review on the Building Wind Impact through On-site Monitoring in Haeundae Marine City: 2021 12th Typhoon OMAIS Case Study

  • Kim, Jongyeong;Kang, Byeonggug;Kwon, Yongju;Lee, Seungbi;Kwon, Soonchul
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.414-425
    • /
    • 2021
  • Overcrowding of high-rise buildings in urban zones change the airflow pattern in the surrounding areas. This causes building wind, which adversely affects the wind environment. Building wind can generate more serious social damage under extreme weather conditions such as typhoons. In this study, to analyze the wind speed and wind speed ratio quantitatively, we installed five anemometers in Haeundae, where high-rise buildings are dense, and conducted on-site monitoring in the event of typhoon OMAIS to determine the characteristics of wind over skyscraper towers surround the other buildings. At point M-2, where the strongest wind speed was measured, the maximum average wind speed in 1 min was observed to be 28.99 m/s, which was 1.7 times stronger than that at the ocean observatory, of 17.0 m/s, at the same time. Furthermore, when the wind speed at the ocean observatory was 8.2 m/s, a strong wind speed of 24 m/s was blowing at point M-2, and the wind speed ratio compared to that at the ocean observatory was 2.92. It is judged that winds 2-3 times stronger than those at the surrounding areas can be induced under certain conditions due to the building wind effect. To verify the degree of wind speed, we introduced the Beaufort wind scale. The Beaufort numbers of wind speed data for the ocean observatory were mostly distributed from 2 to 6, and the maximum value was 8; however, for the observation point, values from 9 to 11 were observed. Through this study, it was possible to determine the characteristics of the wind environment in the area around high-rise buildings due to the building wind effect.

A Study on risk management measurers about High-rise APT (고층아파트 위험관리 방안)

  • Kim, Jong Won
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.2
    • /
    • pp.178-187
    • /
    • 2013
  • This paper studied the potential risk of high-rise apartment by analysis of the loss ratio of housing fire insurance, statistics related high-rise apartment fire, and the insured amount of housing fire insurance, and, found that it is so high and need the improvement of risk management measures for high-rise apartment. Accordingly, the study recommend the composit risk management measures including preventing of fire expanding for higher stories, a shelter for people of hire-rise apartment, and sprinkler protection, etc. Also as risk transfer measures, the composit risk measures for high-rise apartment includes the full insurance of housing fire insurance, third party property liability insurance, and development of endorsement for special risk such as a typhoon, liability etc.

Parametric modeling and shape optimization design of five extended cylindrical reticulated shells

  • Wu, J.;Lu, X.Y.;Li, S.C.;Xu, Z.H.;Wang, Z.D.;Li, L.P.;Xue, Y.G.
    • Steel and Composite Structures
    • /
    • v.21 no.1
    • /
    • pp.217-247
    • /
    • 2016
  • Five extended cylindrical reticulated shells are proposed by changing distribution rule of diagonal rods based on three fundamental types. Modeling programs for fundamental types and extended types of cylindrical reticulated shell are compiled by using the ANSYS Parametric Design Language (APDL). On this basis, conditional formulas are derived when the grid shape of cylindrical reticulated shells is equilateral triangle. Internal force analysis of cylindrical reticulated shells is carried out. The variation and distribution regularities of maximum displacement and stress are studied. A shape optimization program is proposed by adopting the sequence two-stage algorithm (RDQA) in FORTRAN environment based on the characteristics of cylindrical reticulated shells and the ideas of discrete variable optimization design. Shape optimization is achieved by considering the objective function of the minimum total steel consumption, global and locality constraints. The shape optimization for three fundamental types and five extended types is calculated with the span of 30 m~80 m and rise-span ratio of 1/7~1/3. The variations of the total steel consumption along with the span and rise-span ratio are analyzed with contrast to the results of shape optimization. The optimal combination of main design parameters for five extended cylindrical reticulated shells is investigated. The total steel consumption affected by distribution rule of diagonal rods is discussed. The results show that: (1) Parametric modeling method is simple, efficient and practical, which can quickly generate different types of cylindrical reticulated shells. (2) The mechanical properties of five extended cylindrical reticulated shells are better than their fundamental types. (3) The total steel consumption of cylindrical reticulated shells is optimized to be the least when rise-span ratio is 1/6. (4) The extended type of three-way grid cylindrical reticulated shell should be preferentially adopted in practical engineering. (5) The grid shape of reticulated shells should be designed to equilateral triangle as much as possible because of its reasonable stress and the lowest total steel consumption.

In-plane Inelastic Buckling Strength of Parabolic Arch Ribs Subjected Distributed Loading Along the Axis (아치 리브를 따라 작용하는 등분포 하중을 받는 포물선 아치 리브의 비탄성 면내좌굴 강도)

  • Yoon, Ki-Yong;Moon, Ji-Ho;Kim, Sung-Hoon;Lee, Hak-Eun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.1 s.16
    • /
    • pp.55-62
    • /
    • 2005
  • Parabolic arch ribs are widely used in practical. In case of circular arch ribs. Inelastic in-plane buckling behaviors were investigated by Trahair(1996). Recently Yong-lin Pi & Bradford(2004) investigated about in-plane design equation for circular arch ribs. In $1970{\sim}1980$. In-plane buckling strength about parabolic arch ribs were studied by some japan researchers (Sinke, Kuranishi). Study results of Sinke & kuranishi are only valid for rise-span ratio $0.1{\sim}0.2$. In this paper. The researchers investigated about in-plane inelastic buckling behaviors of parabolic arch ribs having rise-span ratio from 0.1 to 0.4. From the results. When the rise-span ratio increase, flexural moments increase and influence of axial force to in-plane buckling strength decrease. Finally, buckling curves for parabolic arch ribs subjected distributed loading along the axis were suggested.

A Study on the Optimum Clearance Selection of Fuel Pump Journal Bearing with Elasto-hydrodynamic Lubrication Analysis (탄성유체윤활해석에 의한 연료 펌프 저널베어링 최적간극 선정 연구)

  • An, Sung Chan;Lee, Sang Don;Son, Jung Ho;Cho, Yong Joo
    • Tribology and Lubricants
    • /
    • v.33 no.1
    • /
    • pp.23-30
    • /
    • 2017
  • The electric controlled marine diesel engine has fuel pump generating the high pressurized fuel for fuel injection to combustion chamber via a common rail. Fuel pump consists of a cam-roller system. Journal bearing installed between a roller and a cam-roller pin is subjected to fluctuating heavy and instant loads by cam lift. First, Kinematic analysis is carried out to predict bearing loads during one cycle acting on the journal bearing. Second, flexible multi-body dynamic analysis and transient elasto-hydrodynamic(EHD) lubrication analysis for journal bearing considering elastic deformation of cam-roller pin, roller and bearing are conducted using AVL EXCITE/PU software to predict lubrication performance. The clearance ratio and journal groove shape providing lubrication oil are important parameter in bearing design having good performance and can be changed easier than other design parameters such as diameter, width, oil supply pressure and bearing material grade. Generally, journal bearing performance is represented by the minimum oil film thickness(MOFT) and peak oil film pressure(POFP). As well as the traditional design parameters(MOFT, POFP), in this study, temperature rise of lubrication oil is also evaluated through the side leakage flow of supplied oil. By the evaluating MOFT, POFP and temperature rise, the optimum bearing clearance ratio is decided.

Vibration Characteristics and the Serviceability Evaluation of High-rise Building during Strong Wind (강풍시 고층건물의 진동특성 및 사용성 평가)

  • Yoon, Sung-Won;Kim, Do-Hyun;Jeong, Sug-Chang;Kim, Dong-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.5
    • /
    • pp.57-65
    • /
    • 2007
  • After measuring wind induced response for a high-rise steel building, the damping ratio and natural frequency were analyzed in this paper. In order to examine amplitude dependence, random decrement method was used. Two methods were analyzed by comparing dynamic properties from random decrement method and half powered-band width method. In addition, through serviceability evaluation during strong wind, compatibility of two methods to Japanese guidelines for the evaluation of habitability to building vibration and national building code of Canada was considered. The amplitude dependence of the damping ratio by RD method was shown and the amplitude dependence of the natural frequency was relatively very small in an aspect of engineering sense. Moreover, the measured building was satisfied with serviceability and Japanese guideline is stricter than NBCC code.

  • PDF

Effect of Cortisone on Serum Protein of Gamma-Irradiated Mice ($\gamma$線에 照射된 마우스의 血淸蛋白質에 미치는 Cortisone의 影響)

  • Cho, You Joung;Choi, Kook Hun;Ham, Sang Yul
    • The Korean Journal of Zoology
    • /
    • v.14 no.3
    • /
    • pp.119-124
    • /
    • 1971
  • Male mice of strain SM were given 128 rads of single whole-body gamma-irradiation of $^{60}Co$, 14 to 16 minutes following a subcutaneous injection of physiological saline or cortisone acetate (1mg/day, for 4 days preirradiation). The serum protein patterns and the level of the total serum proteins were determined at various time intervals after exposure. Total serum protein was determined by Biuret method and serum protein fractions and A/G ratio were determined by paper electrophoresis using Whatman No.1 filter paper and barbital buffer (pH 8.6, ionic strength 0.06). 1. Total body gamma-irradiation caused a rise in the level of the total serum protein at 1 day and in the level of the serum albumin-globulin ratio at 5 days in both cortisone acetate-treated and control groups. 2. Cortisone acetate delayed the total serum protein rise at 5, 10, and 20 days after exposure. 3. Cortisone acetate delayed the A/G ratio rise at 1, 5, and 10 days after exposure. 4. It may be inferred that cortisone greatly reduces the sensitivity of mice to gamma-irradiation on the blood protein, probided that cortisone is given before the exposure.

  • PDF

Seismic Performance of Low-rise Piloti RC Buildings with Eccentric Core (편심코어를 가지는 저층 철근콘크리트 필로티 건물의 내진성능)

  • Kim, Sung-Yong;Kim, Kyung-Nam;Yoon, Tae-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.490-498
    • /
    • 2020
  • In this study, the seismic performance of low-rise piloti buildings with eccentric core (shear wall) positions was analyzed and reviewed. A prototype was selected among constructed low-rise piloti buildings with eccentric cores designed based on KBC2005. The seismic performance of the building showed plastic behavior in the X-direction and elastic behavior in the Y-direction. The inter-story drift is larger than that of a concentric core case and has the maximum allowed drift ratio. The displacement ratio of the first story is much larger than that of upper stories, and the frame structure in the first story is vulnerable to lateral force. Therefore, low-rise piloti buildings with eccentric cores need to have less lateral displacement, as well as reinforcement of the lateral resistance capacity in seismic design and seismic retrofit.

Simulation of the Kitchen and Bathroom Exhaust Systems in High-Rise Apartment Buildings (고층 아파트의 주방 및 욕실 배기 시스템 시뮬레이션)

  • 김영돈;김광우
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.12
    • /
    • pp.996-1006
    • /
    • 2003
  • The objective of this study is to find major variables which influence the performance of kitchen and bathroom exhaust systems in high-rise apartment buildings. For this purpose, the influencing factors on the exhaust airflow rates from the kitchen or bathroom are identified and in every cases, which are made of combinations between the influencing factors, the exhaust airflow rates are calculated through the simulations. The results of the simulation show that the exhaust airflow rates from the kitchen and bathroom mainly depends on outdoor air temperature, number of floors, airtightness of the building envelope, fan on ratio, vertically connected to same shaft, exhaust fan capacity for kitchen or bathroom, roof ventilator capacity and shaft area for kitchen or bathroom exhaust.