• 제목/요약/키워드: Rigorous approach

Search Result 189, Processing Time 0.886 seconds

Eigenvalue Analysis of Power Systems with Non-Continuous Operating Elements by the RCF Method : Modeling of the State Transition Equations (불연속 동작특성을 갖는 전력계통의 RCF법을 사용한 고유치 해석 : 상태천이 방정식으로의 모델링)

  • Kim Deok Young
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.2
    • /
    • pp.67-72
    • /
    • 2005
  • In conventional small signal stability analysis, system is assumed to be invariant and the state space equations are used to calculate the eigenvalues of state matrix. However, when a system contains switching elements such as FACTS devices, it becomes non-continuous system. In this case, a mathematically rigorous approach to system small signal stability analysis is by means of eigenvalue analysis of the system periodic transition matrix based on discrete system analysis method. In this paper, RCF(Resistive Companion Form) method is used to analyse small signal stability of a non-continuous system including switching elements. Applying the RCF method to the differential and integral equations of power system, generator, controllers and FACTS devices including switching elements should be modeled in the form of state transition equations. From this state transition matrix eigenvalues which are mapped to unit circle can be calculated.

Modeling of the State Transition Equations of Power Systems with Non-continuously Operating Elements by the RCF Method

  • Kim, Deok-Young
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.4
    • /
    • pp.344-349
    • /
    • 2005
  • In conventional small signal stability analysis, the system is assumed to be invariant and the state space equations are used to calculate the eigenvalues of the state matrix. However, when a system contains switching elements such as FACTS equipments, it becomes a non-continuous system. In this case, a mathematically rigorous approach to system small signal stability analysis is performed by means of eigenvalue analysis of the system's periodic transition matrix based on the discrete system analysis method. In this paper, the RCF (Resistive Companion Form) method is used to analyze the small signal stability of a non-continuous system including switching elements. Applying the RCF method to the differential and integral equations of the power system, generator, controllers and FACTS equipments including switching devices should be modeled in the form of state transition equations. From this state transition matrix, eigenvalues that are mapped into unit circles can be computed precisely.

Single Exposure Imaging of Talbot Carpets and Resolution Characterization of Detectors for Micro- and Nano- Patterns

  • Kim, Hyun-su;Danylyuk, Serhiy;Brocklesby, William S.;Juschkin, Larissa
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.245-250
    • /
    • 2016
  • In this paper, we demonstrate a self-imaging technique that can visualize longitudinal interference patterns behind periodically-structured objects, which is often referred to as Talbot carpet. Talbot carpet is of great interest due to ever-decreasing scale of interference features. We demonstrate experimentally that Talbot carpets can be imaged in a single exposure configuration revealing a broad spectrum of multi-scale features. We have performed rigorous diffraction simulations for showing that Talbot carpet print can produce ever-decreasing structures down to limits set by mask feature sizes. This demonstrates that large-scale pattern masks may be used for direct printing of features with substantially smaller scales. This approach is also useful for characterization of image sensors and recording media.

Derivation of a group of lyapunov functions associated with the system energy

  • Moon, Young-Hyun;Kim, Young-Jin;Ko, Kwang-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.518-521
    • /
    • 1994
  • Most of the theorems of nonlinear stability is based on the Lyapunov stability theory. The Lyapunov function method is most well-known and provides precise and rigorous theoretical backgrounds. However, the conventional approach to direct stability analysis has been performed without taking account of damping effects. For accurate stability analysis of nonlinear systems, the damping effects should be considered. This paper presents a new method to derive a group of Lyapunov functions to reflect the damping effects by considering the integral relationships of the system governing equations.

  • PDF

Small signal stability analysis of power systems with non-continuous operating elements by using RCF method : Modeling of the state transition equation (불연속 동작특성을 갖는 전력계통의 RCF법을 사용한 미소신호 안정도 해석 : 상태천이 방정식으로의 모델링)

  • Kim Deok Young
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.342-344
    • /
    • 2004
  • In conventional small signal stability analysis, system is assumed to be invariant and the state space equations are used to calculate the eigenvalues of state matrix. However, when a system contains switching elements such as FACTS devices, it becomes non-continuous system. In this case, a mathematically rigorous approach to system small signal stability analysis is by means of eigenvalue analysis of the system periodic transition matrix based on discrete system analysis method. In this research, RCF(Resistive Companion Form) method is used to analyse small signal stability of a non-continuous system including switching elements'. Applying the RCF method to the differential and integral equations of power system, generator, controllers and FACTS devices including switching elements should be modeled in the form of state transition matrix. From this state transition matrix eigenvalues which are mapped to unit circle can be calculated.

  • PDF

A State Space Analysis on the Stability of Periodic Orbit Predicted by Harmonic Balance

  • Sung, Sang-Kyung;Lee, Jang-Gyu;Kang, Tae-Sam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.67.5-67
    • /
    • 2001
  • A closed loop system with a linear plant and nonlinearity in the feedback connection is analyzed for its quasi-static orbital stability by a state-space approach. First a periodic orbit is assumed to exist in the loop which is determined by describing function method for the given nonlinearity. This is possible by selecting a proper nonlinearity and a rigorous justification of the describing function method.[1-3, 18, 20]. Then by introducing residual operator, a linear perturbed model can be formulated. Using various transformations like a modified eigenstructure decomposition, periodic-averaging, charge of variables and coordinate transformation, the stability of the periodic orbit, as a solution of harmonic balance, can be shown by investigating a simple scalar function and result of linear algebra. This is ...

  • PDF

Finite Element Analysis and Local a Posteriori Error Estimates for Problems of Flow through Porous Media (다공매체를 통과하는 유동문제의 유한요소해석과 부분해석후 오차계산)

  • Lee, Choon-Yeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.5
    • /
    • pp.850-858
    • /
    • 1997
  • A new a posteriori error estimator is introduced and applied to variational inequalities occurring in problems of flow through porous media. In order to construct element-wise a posteriori error estimates the global error is localized by a special mixed formulation in which continuity conditions at interfaces are treated as constraints. This approach leads to error indicators which provide rigorous upper bounds of the element errors. A discussion of a compatibility condition for the well-posedness of the local error analysis problem is given. Two numerical examples are solved to check the compatibility of the local problems and convergence of the effectivity index both in a local and a global sense with respect to local refinements.

An integrated system for synthesis of plant-wide control structure

  • Choi, In-Seok;Yoon, En-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1265-1270
    • /
    • 1990
  • A prototype integrated system and its theories for distributed SISO control structure synthesis of complete chemical plants is developed. The scope of this work includes control structure synthesis not only of simple units with unspecified control loops but also of the complex process at preliminary and basic design stage. Hierarchical approach and dual-decomposition strategy (that is multi-layer decomposition and multi-echelon decomposition) is applied to this system. Because automatic control structure synthesis of complex plants is a problem defined as a series of knowledge-intensive tasks within multiple spaces, the established methodology is complemented by not only techniques from knowledge-based expert systems but also shortcut and rigorous control theories. This system is used for education of control designers, process engineers, operators and students as well as for operability studying, in-line and on-line process control structure synthesis.

  • PDF

A Study on the Characteristics of Fast Distributed Power Control Schemes in Cellular Network under Dynamic Channel (셀룰러 네트워크의 동적채널에서 빠른 분산 전력 제어 기법의 특성에 대한 연구)

  • Lee, Young-Dae;Park, Hyun-Sook
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.2
    • /
    • pp.49-55
    • /
    • 2008
  • To address the convergence issue of power control algorithms, a number of algorithms have been developed hat shape the dynamics of up-link power control for cellular network. Power algorithms based on fixed point iterations can be accelerated by the use of various methods, one of the simplest being the use of Newton iterations, however, this method has the disadvantage which not only needs derivatives of the cost function but also may be weak to noisy environment. we showed performance of the power control schemes to solve the fixed point problem under static or stationary channel. They proved goof performance to solve the fixed point problem due to their predictor based optimal control and quadratic convergence rate. Here, we apply the proposed power control schemes to the problem of the dynamic channel or to dynamic time varying link gains. The rigorous simulation results demonstrated the validity of our approach.

  • PDF

Nonlinear control for robot manipulator (로보트 매니퓰레이터에 대한 비선형 제어)

  • 이종용;이승원;이상효
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.263-268
    • /
    • 1990
  • This paper deals with the manipulator with actuator described by equation D over bar(q) $q^{...}$ = u-p over bar (q, $q^{.}$, $q^{..}$) with a control input u. We imploy a simple method of control design which bas two stages. First, a global linearization is performed to yield a decoupled controllable linear system. Then a controller is designed for this linear system. We provide a rigorous analysis Of the effect of uncertain dynamics, which we study using robustness results In time domain based on a Lyapunav equation and the total stability theorem. I)sing this approach we simulate the performance of controller about a robotic manipulator with actuator.tor.r.

  • PDF