• 제목/요약/키워드: Rigid-plastic Finite Element Method

검색결과 250건 처리시간 0.028초

박막/쉘 혼합요소의 판별조건과 강소성/탄소성 유한요소해석 적용에 관한 연구 (A Study on the Criterion for Membrane/Shell Mixed Element and Application to the Rigid-Plastic/Elastic-Plastic Finite Element Analysis)

  • 정동원;양경부
    • 한국해양공학회지
    • /
    • 제13권2호통권32호
    • /
    • pp.1-10
    • /
    • 1999
  • This study is concerned with the application of new criterion for membrane/shell mixed element in the rigid-plastic finite element analysis and elastic-plastic finite element analysis. The membrane/shell mixed element can be selctively adapted to the pure stretching condition by using membrane or a shell element in the bending effect areas. Thus, membrane/shell mixed element requires a efficient criterion for a distinction between membrane and shell element. In the present study introduce the criterion using the angle of between two element and confirm a generality of criterion from appling the theory to a rigid-plastic and elastic-plastic problems.

  • PDF

적응성 선향저감적분법에 의한 요소의 안정성 향상과 강소성 유한요소해석에의 적용 (Improvement of Element Stability using Adaptive Directional Reduced Integration and its Application to Rigid-Plastic Finite Element Method)

  • Park, K.;Lee, Y.K.;Yang, D.Y.
    • 한국정밀공학회지
    • /
    • 제12권3호
    • /
    • pp.32-41
    • /
    • 1995
  • In the analysis of metal forming processes by the finite element method, there are many numerical instabilities such as element locking, hourglass mode and shear locking. These instabilities may have a bad effect upon accuracy and convergence. The present work is concerned with improvement of stability and efficiency in two-dimensional rigid-plastic finite element method using various type of elemenmts and numerical intergration schemes. As metal forming examples, upsetting and backward extrusion are taken for comparison among the methods: various element types and numerical integration schemes. Comparison is made in terms of stability and efficiency in element behavior and computational efficiency and a new scheme of adaptive directional reduced integration is introduced. As a result, the finite element computation has been stabilized from the viewpoint of computational time, convergency, and numerical instability.

  • PDF

강소성 외연적 유한요소법을 이용한 자동차 박판제품의 성형공정에 대한 단면해석 (Sectional Forming Analysis of Automobile Sheet Metal Parts by using Rigid-Plastic Explicit Finite Element Method)

  • 안동규;정동원;양동열;이장희
    • 한국자동차공학회논문집
    • /
    • 제3권3호
    • /
    • pp.19-28
    • /
    • 1995
  • The explicit scheme for finite element analysis of sheet metal forming problems has been widely used for providing practical solutions since it improves the convergency problem, memory size and computational time especially for the case of complicated geometry and large element number. The explicit schemes in general use are based on the elastic-plastic modelling of material requiring large computation time. In the present work, rigid-plastic explicit finite element method is introduced for analysis of sheet metal forming processes in which plane strain normal anisotropy condition can be assumed by dividing the whole piece into sections. The explicit scheme is in good agreement with the implicit scheme for numerical analysis and experimental results of auto-body panels. The proposed rigid-plastic explicit finite element method can be used as robust and efficient computational method for prediction of defects and forming severity.

  • PDF

2차원 박판성형공정 해석을 위한 강소성 외연적 유한요소 수식화 (Rigid-Plastic Explicit Finite Element Formulation for Two-Dimensional Analysis of Sheet Metal Forming Processes)

  • 안동규;정동원;정완진
    • 대한기계학회논문집A
    • /
    • 제20권1호
    • /
    • pp.88-99
    • /
    • 1996
  • The explicit scheme for finite element analysis of sheet metal forming problems has been widely used for providing practical solutions since it improves the convergency problem, memory size and computational time especially for the case of complicated geometry and large element number. The explicit schemes in general use are based on the elastic-plastic modeling of material requiring large computataion time. In the present work, a basic formulation for rigid-plastic explicit finite element analysis of plain strain sheet metal forming problems has been proposed. The effect of some basic parameters involved in the dynamic analysis has been studied in detail. Thus, the effective ranges of parameters have been proposed for numerical simultion by the rigid-plastic explicit finite element method. A direct trial-and-error method is introduced to treat contact and friction. In computation, sheet material is assumed to possess normal anisotropy and rigid-plastic workhardening characteristics. In order to show the validity and effectiveness of the proposed explicit scheme, computations are carried out for cylindrical punch stretching and the computational results are compared with those by the implicit scheme as well as with a commercial code. The proposed rigid-plastic exlicit finite element method can be used as a robust and efficient computational method for analysis of sheet metal forming.

비정상상태 이형재 인발공정의 3차원 강소성 유한요소해석 (Three-Dimensional Rigid-Plastic Finite Element Analysis of Nonsteady State Shaped Drawing Process)

  • 김호창;최영;김병민
    • 한국정밀공학회지
    • /
    • 제15권7호
    • /
    • pp.119-128
    • /
    • 1998
  • In this paper, nonsteady state shaped drawing process has been investigated using the three-dimensional rigid-plastic finite element method. In order to analyze the shaped drawing process, a method to define straight converging die considering straight die part, die radius part and bearing part has been proposed. In addition, the modeling of initial billet and the generation procedure of mesh system have been suggested. The three-dimensional rigid-plastic finite element simulation has been performed for a square sectional drawing process and its result has been confirmed in comparison with the existing experimental one. Also, for the same process conditions, the effect of perimeter ratio in the shaped drawing process has been investigated.

  • PDF

축대칭 단조공정에서 최종제품의 탄성회복에 관한 해석 (Determination of Elastic Recovery for Axi-Symmetric Forged Products)

  • Kim, T.H.;Kim, D.J.;Park, J.C.
    • 한국정밀공학회지
    • /
    • 제13권9호
    • /
    • pp.165-173
    • /
    • 1996
  • The dimensional accuracy of a final product is mainly affected by elastic die deformation during the forging and elastic recovery after the ejection in cold forging process. The investigations on elastic recovery are not so much as those of elastic die deformation. The elastic recovery can be determined by using the elastic-plalstic finite element analysis, but, this method has some limits such as poor conver- gence and long computational time, etc. In this paper, a theoretical analysis for predicting the elastic recovery of a final product in axi-symmetric forging process by using the rigid-plastic finite element method is presented. The rigid-plastic finite element analysis of a cold forward extrusion process involving loading, ejecting process is accomplished by rigid-plastic FE code, DEFORM. The effect of elastic die deformation on the final product dimenmsion is also considered. The calculated elastic recovery is compared is compared with the analysis result of elastic-plastic FE code. ABAQUS.

  • PDF

2차원 절삭에서 공구이탈시 발생하는 버에 관한 강소성 유한요소해석 (Rigid-Plastic Finite Element Analysis of Burr Formation at the Exit Stage in Orthogonal Cutting)

  • 고대철;김병민;고성림
    • 한국정밀공학회지
    • /
    • 제15권4호
    • /
    • pp.125-133
    • /
    • 1998
  • The objective of this study is to propose a new approach for modelling of burr formation process during orthogonal cutting when the tool exits the workpiece. This approach is based on the rigid-plastic finite element method combined with the ductile fracture criterion and the element kill method. This approach is applied to orthogonal cutting process to predict the fracture location and the fracture angle as well as the cutting force. To validate this approach, orthogonal cutting tests inside SEM(scanning electron microscope) at very low speed are carried out using A16061-T6 to observe the behavior of the material during the chip and the burr formation. The results of the experiment are compared with those of the finite element simulation.

  • PDF

강-서성 유한요소 해석에서의 3차원 역추적 기법에 관한 연구 (Feasibility Study on Three-Dimensional Backward Tracing Scheme of Rigid-Plastic Finite Element Analysis)

  • 이진희;강범수;김병민
    • 소성∙가공
    • /
    • 제4권3호
    • /
    • pp.267-281
    • /
    • 1995
  • Preform design is one of the critical fields in metal forming. The finite element method(FEM) has been effective in designing preforms and process sequence, for which the backward tracing scheme of the rigid-plastic FEM has been explored. In this work a program using the backward tracing scheme by the rigid-plastic FEM is developed for three-dimensional plastic deformation, which is an extension of the scheme from two-dimensional cases. The calculation of friction between workpiece and die, and handling of boundary conditions during backward tracing require sophisticated treatment. The developed program is applied to upsetting of a rectangular block and to side pressing of a cylindrical workpiece. The results of the two applications show feasibility of the program on three-dimensional plastic deformation.

  • PDF

2차원 박판성형공정해석을 위한 강소성 외연적 유한 요소수식화 (Rigid-Plastic Explicit Finite Element Formulation for Two-Dimensional Analysis of Sheet Metal Processes)

  • 안동규;정동원;양동열
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 추계학술대회 논문집
    • /
    • pp.206-211
    • /
    • 1993
  • The explicit scheme for finite element analysis of sheet metal forming problems has been widely used for providing practical solution since it improves the convergency problem,memory size and computational time especially for the case of complicated geometry and large element number. In the present work, a basic formulation for rigid-plastic explicit finite element analysis of plain strain sheet metal forming problems has been proposed. The effect of some basic parameters involved in the dynamic analysis has been studied in detail. A direct trial-and-error method is introduced to treat contact and friction. In order to show the validity and effectiveness of the proposed explicit scheme, computation are carried out for cylindrical punch stretching and the computational results are compared with those by the implicit scheme as well as with a commercial code. The proposed rigid-plastic explicit element method can be used as a robust and efficient computational method for analysis of sheet method forming.

  • PDF

강소성 유한요소해석의 안정화와 고능률화에 관한 연구 (Computational strategies for improving efficiency in rigid-plastic finite element analysis)

  • 추만석;김영석
    • 대한기계학회논문집
    • /
    • 제13권3호
    • /
    • pp.317-322
    • /
    • 1989
  • 본 연구에서는 Liu의 매트릭스를 강소성 유한요소법에 도입하여 통상의 소성가공 공정중에 있는 피가공물의 3차원 변형을 실용적인 수준에서 해석 가능케 하는 강소성 유한요소법을 도입하여 통상의 소성가공 공정중에 있는 피가공물의 3차원 변형을 실용적인 수준에서 해석 가능케 하는 강소성 유한요소법을 제안하고 실례를 통하여 제안한수법에 의하여 얻어진 해의 안정성과 계산효율을 검토한다.