• 제목/요약/키워드: Rigid-body Model

검색결과 348건 처리시간 0.025초

햅틱 인터페이스를 위한 물리기반 변형체 실시간 시뮬레이션 (Physics-based Real-time Simulation of Deformable Body for Haptic Interface)

  • 전성기;최진복;조맹효
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.557-562
    • /
    • 2004
  • For constructing virtual environment it is more natural to model object as deformable body than as rigid body. High accuracy of simulation of model and low-latency computational cost for real-time simulation should be guaranteed. We pre-compute Green function through finite element analysis of deformable body and it is possible to simulate deformation of body in real-time environment using Capacitance Matrix Algorithm. Also, the capacitance matrix algorithm enables to construct the haptic rendering which serves the reaction force through a haptic device. The Newmark scheme is used for the more realistic haptic rendering and dynamic simulation in real-time.

  • PDF

강체평면에 흉착접촉하는 반구헝돌기의 유한요소모델링 (finite Element Modeling of a Hemispherical Asperity Adhesively Contacting the Plane Surface of Semi-Infinite Rigid Body)

  • 조성산;박승호
    • 대한기계학회논문집A
    • /
    • 제26권11호
    • /
    • pp.2436-2441
    • /
    • 2002
  • Finite element technique considering adhesive forces is proposed and applied to analyze the behavior of elastic hemispherical asperity adhesively contacting the plane surface of semi -infinite rigid body. It is demonstrated that the finite element model simulates interfacial phenomena such as jump -to-contact and adhesion hysteresis that cannot be simulated with the currently available adhesive contact continuum models. This simulation aiso provides valuable information on contact pressure, contact region and stress distributions. This technique is anticipated to be utilized in designing a low-adhesion surface profile for MEMS/NEMS applications since various contact geometries can be analyzed with this technique.

기울어짐 진동 모드 제거를 위한 CD-ROM 드라이브의 댐퍼 최적 위치 (Optimal Position of the Dampers in a CD-ROM Drive to Remove the Tilting Vibration mode)

  • 정진태;박준민;노대성
    • 소음진동
    • /
    • 제7권3호
    • /
    • pp.393-399
    • /
    • 1997
  • This study proposes a methodology with which the optimal damper positions of the feeding system in a CD-ROM drive are determined to removal the harmful tilting vibration modes. For this purpose, vibration characteristics of the feeding system are identified by a theoretical modeling as well as vibration experiments. We perform the modal testings using the impact hammer and shaker; furthermore, we establish a vibration model due to the rigid-body motion. The analysis and experiments show that the feeding system has three rigid-body vibration modes in the low-frequency region and two of them come from the tilting modes. We show that the tilting modes can be removed by determining the damper positions.

  • PDF

Coupled hydroelastic vibrations of a liquid on flexible space structures under zero-gravity - Part I. Mechanical model

  • Chiba, Masakatsu;Chiba, Shinya;Takemura, Kousuke
    • Coupled systems mechanics
    • /
    • 제2권4호
    • /
    • pp.303-327
    • /
    • 2013
  • The coupled free vibration of flexible structures and on-board liquid in zero gravity space was analyzed, considering the spacecraft main body as a rigid mass, the flexible appendages as two elastic beams, and the on-board liquid as a "spring-mass" system. Using the Lagrangians of a rigid mass (spacecraft main body), "spring-mass" (liquid), and two beams (flexible appendages), as well as assuming symmetric motion of the system, we obtained the frequency equations of the coupled system by applying Rayleigh-Ritz method. Solving these frequency equations, which are governed by three system parameters, as an eigenvalue problem, we obtained the coupled natural frequencies and vibration modes. We define the parameter for evaluating the magnitudes of coupled motions of the added mass (liquid) and beam (appendages). It was found that when varying one system parameter, the frequency curves veer, vibration modes exchange, and the significant coupling occurs not in the region closest to the two frequency curves but in the two regions separate from that region.

An Adaptive Tracking Controller for Vibration Reduction of Flexible Manipulator

  • Sung Yoon-Gyeoung;Lee Kyu-Tae
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제7권3호
    • /
    • pp.51-55
    • /
    • 2006
  • An adaptive tracking controller is presented for the vibration reduction of flexible manipulator employed in hazardous area by combining input shaping technique with sliding-mode control. The combined approach appears to be robust in the presence of severe disturbance and unknown parameter which will be estimated by least-square method in real time. In a maneuver strategy, it is found that a hybrid trajectory with a combination of low frequency mode and rigid-body mode results in better performance and is more efficient than the traditional rigid body trajectory alone which many researchers have employed. The feasibility of the adaptive tracking control approach is demonstrated by applying it to the simplified model of robot system. For the applications of the proposed technique to realistic systems, several requirements are discussed such as control stability and large system order resulted from finite element modeling.

펄세이터형 세탁 시스템의 진동 해석 (Vibration Analysis of a Pulsator type Washing System)

  • 이신영;강주석;윤중락;이장무;윤구영;김남권
    • 소음진동
    • /
    • 제7권2호
    • /
    • pp.261-272
    • /
    • 1997
  • Recently washing machines are to be in lower vibration and lower sound because of better environment. Vibration problems in washing machines occur in both washing mode and spinning mode, but vibration in spinning mode becomes main problem because of its high rotating speed and continuity. Vibration while spinning is mainly due to rigid body motion of total washing system which includes suspending rods, washing bath, spinning bath, and gear sets. In this study, some researches were done in order to analyze the rigid body motion of washing system and flexible vibration of spinning bath. A basic mathematical model was established, and the effect of position of salt water and shape change of salt water case were considered. And the effect of lengths of suspending rods, attaching angles, vertical and horizontal position, stiffness of spring on the change of vibration were also considered. To identify the effect of salt water on vibration, some measurements were done. When salt water was positioned at upper part, the effect was most and this coincides with the tendency of simulation.

  • PDF

CD-ROM 드라이브 피딩 시스템의 진동해석 (Vibration of the feeding system for a CD-ROM Drive)

  • 박준민;노대성;정진태
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1996년도 추계학술대회논문집; 한국과학기술회관, 8 Nov. 1996
    • /
    • pp.324-329
    • /
    • 1996
  • Vibration characteristics of the feeding system in a CD-ROM drive are identified by a theoretical modeling as well as vibration experiments. For this purpose, we establish a vibration model due to the rigid-body motion and perform the modal testings using the impact hammer and shaker. The analysis and experiments show that the feeding system has three rigid-body vibration modes in the low-frequency region and two of them come from the tilting modes. In order to remove the harmful tilting modes for the tracking servo control, a methodology to find the optimal positions of the dampers is also proposed in this study.

  • PDF

Nonlinear Dynamic Analysis of a Large Deformable Beam Using Absolute Nodal Coordinates

  • Jong-Hwi;Il-Ho;Tae-Won
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제5권4호
    • /
    • pp.50-60
    • /
    • 2004
  • A very flexible beam can be used to model various types of continuous mechanical parts such as cables and wires. In this paper, the dynamic properties of a very flexible beam, included in a multibody system, are analyzed using absolute nodal coordinates formulation, which is based on finite element procedures, and the general continuum mechanics theory to represent the elastic forces. In order to consider the dynamic interaction between a continuous large deformable beam and a rigid multibody system, a combined system equations of motion is derived by adopting absolute nodal coordinates and rigid body coordinates. Using the derived system equation, a computation method for the dynamic stress during flexible multibody simulation is presented based on Euler-Bernoulli beam theory, and its reliability is verified by a commercial program NASTRAN. This method is significant in that the structural and multibody dynamics models can be unified into one numerical system. In addition, to analyze a multibody system including a very flexible beam, formulations for the sliding joint between a very deformable beam and a rigid body are derived using a non-generalized coordinate, which has no inertia or forces associated with it. In particular, a very flexible catenary cable on which a multibody system moves along its length is presented as a numerical example.

Semi-analytical numerical approach for the structural dynamic response analysis of spar floating substructure for offshore wind turbine

  • Cho, Jin-Rae;Kim, Bo-Sung;Choi, Eun-Ho;Lee, Shi-Bok;Lim, O-Kaung
    • Structural Engineering and Mechanics
    • /
    • 제52권3호
    • /
    • pp.633-646
    • /
    • 2014
  • A semi-analytical numerical approach for the effective structural dynamic response analysis of spar floating substructure for offshore wind turbine subject to wave-induced excitation is introduced in this paper. The wave-induced rigid body motions at the center of mass are analytically solved using the dynamic equations of rigid ship motion. After that, the flexible structural dynamic responses of spar floating substructure for offshore wind turbine are numerically analyzed by letting the analytically derived rigid body motions be the external dynamic loading. Restricted to one-dimensional sinusoidal wave excitation at sea state 3, pitch and heave motions are considered. Through the numerical experiments, the time responses of heave and pitch motions are solved and the wave-induced dynamic displacement and effective stress of flexible floating substructure are investigated. The hydrodynamic interaction between wave and structure is modeled by means of added mass and wave damping, and its modeling accuracy is verified from the comparison of natural frequencies obtained by experiment with a 1/100 scale model.