• 제목/요약/키워드: Rigid-Plastic Finite Element Analysis

검색결과 208건 처리시간 0.022초

유한요소해석을 이용한 환봉 단조공정 최적화 (Optimization of Round Bar Forging Process by Using Finite Element Analysis)

  • 최성기;천명식;문영훈
    • 소성∙가공
    • /
    • 제13권2호
    • /
    • pp.142-147
    • /
    • 2004
  • Three-dimensional rigid-plastic finite element analysis has been performed to optimize open die forging process to make round bar. In the round bar forging, it is difficult to optimize process parameters in the operational environments. Therefore in this study, finite element method is used to analyze the practice of open die forging, focusing on the effects of reduction, feeding pitch and rotation angle for optimal forging pass designs. The soundness of forging process has been estimated by the smoothness and roundness of the bar at various combination of feeding pitches and rotation angles. From the test result, process conditions to make round bar having precise dimensional accuracy have been proposed.

헬리컬 기어의 금형변형 및 탄성회복에 대한 유한요소해석 (Finite Element Method on Die Deformation and Elastic Spring-Back Analysis for Product of Helical Gear)

  • 양동열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 춘계학술대회논문집
    • /
    • pp.237-240
    • /
    • 1999
  • The elastic stress analysis of the die for helical gear forging has been calculated by using the nodal force at the final stage obtained from the rigid-plastic finite element analysis. In order to obtain more precise gear products. the elastic analysis of the die after release of punch and the elastic spring-back analysis of product after ejection have been performed and the final dimension of the computational product has been in good agreement with that of the experimental product.

  • PDF

파인 블랭킹에서 전단면에 미치는 다이 틈새의 영향에 관한 유한 요소 해석 (Finite Element Analysis on Effect of Die Clearance on Shear Planes in Fine Blanking)

  • 김윤주;곽태수;배원병
    • 소성∙가공
    • /
    • 제9권2호
    • /
    • pp.152-158
    • /
    • 2000
  • A finite element analysis has been performed to investigate the effect of die clearance on shear planes in the fine blanking of a part of automobile safety belt. For the analysis, S45C is selected as an material, which is used in manufacturing the part of automobile safety belt, and Cockcroft-Latham fracture criterion is applied. Effect of die Clearance on die-roll width, die-roll depth, burnish zone, and fracture zone has been investigated in the finite element analysis by a rigid-plastic FEM code, DEFORM-2D. From the analysis, it has been found that die-roll depth and depth of the shear plane increase with increasing die clearance. And the burnish zone decreases with increasing die clearance, but the variation of fracture zone is opposite to that of burnish zone because the increase in die clearance requires less fracture energy. Theoretical predictions are compared with experimental results. There is a good agreement between theory and experiment.

  • PDF

결정 소성학과 강소성 유한요소해석을 연계한 ECAE 공정에서의 변형 집합 조직 발달에 대한 연구 (Prediction of Texture Evolution in Equal Channel Angular Extrusion (ECAE) Using Rate-Independent Crystal Plasticity with Rigid-Plastic Finite Element Method)

  • 김경진;윤정환;양동열
    • 한국정밀공학회지
    • /
    • 제32권11호
    • /
    • pp.937-944
    • /
    • 2015
  • Recently, the change of mechanical properties and microstructural evolution during severe plastic deformation (SPD), such as Equal Channel Angular Extrusion (ECAE), has been the subject of intensive investigation because of the unique physical and mechanical properties of severely deformed materials. In this study, two types of ECAE processes were considered, dies with intersection angles ${\Phi}$ of $90^{\circ}$ and $120^{\circ}$, using experiments and simulations. The decoupled method, in which the rigid-plastic finite element method is incorporated with the rate-independent crystal plasticity model, was applied to predict the texture evolution in commercially pure aluminum during the ECAE processes with $120^{\circ}$ and $90^{\circ}$ dies. The simulated textures were compared with a measured texture via an EBSD OIM analysis. The comparison showed that the simulated textures generally were in good agreement with the experimentally measured texture.

중공축 내접 스플라인 성형을 위한 설계변수의 영향 (Effect of the Design Parameter for Internal Spline Forming Using the Tube)

  • 왕창범;임성주;박용복
    • 소성∙가공
    • /
    • 제15권7호
    • /
    • pp.512-517
    • /
    • 2006
  • In this paper, the cold extrusion process for internal spline forming using a thin and long tube has been analyzed by using a rigid plastic finite element code. The internal spline consists of 10 tooths. The cold extrusion process has been focused on the comparisions of load-stroke relation and filling states of the teeth according to design parameters. The design parameters involve extrusion ratio, extrusion angle and friction factor. The internal spline forming can cause the buckling and folding during the cold extrusion process because of using a thin and long tube. The optimum design parameters have been obtained through rigid-plastic finite elements analysis. The extrusion ratio and extrusion angle have great effects on the deformation characteristics of the cold extrusion process.

세장비가 큰 사각컵 디프 드로잉의 유한요소 해석 (Finite Element Analysis of Multi-Stage Deep Drawing Process for High Precision Rectangular Case with Extreme Aspect Ratio)

  • 구태완;하병국;송우진;강범수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 금형가공 심포지엄
    • /
    • pp.274-284
    • /
    • 2002
  • Deep drawing process for rectangular drawn section is different with that for axisymmetric circular one. Therefore deep drawing process for rectangular drawn section requires several intermediate steps to generate the final configuration without any significant defect. In this study, finite element analysis for multi-stage deep drawing process for high precision rectangular cases is carried out especially for an extreme aspect ratio. The analysis is performed using rigid-plastic finite element method with an explicit time integration scheme of the commercial program, LS-DYNA3D. The sheet blank is modeled using eight-node continuum brick elements. The results of analysis show that the irregular contact condition between blank and die affects the occurrence of failure, and the difference of aspect ratio in the drawn section leads to non-uniform metal flow, which may cause failure. A series of experiments for multi-stage deep drawing process for the rectangular cases are conducted, and the deformation configuration and the thickness distribution of the drawn rectangular cases are investigated by comparing with the results of the numerical analysis. The numerical analysis with an explicit time integration scheme shows good agreement with the experimental observation.

  • PDF

격자 압축법을 이용한 격자 재구성 알고리즘 개발 (Development of Remeshing Algorithm using Mesh Compression Method)

  • 홍진태;양동열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 추계학술대회 논문집
    • /
    • pp.62-65
    • /
    • 2000
  • For saving time and cost of experiment Finite Element Method has been developed for several decades. It's the defect of FEM that when we are in processing of finite element analysis, the material if deformed so much that we can't proceed analysis any more. In this case, the remeshing process should be done on this material. In hot forging process, almost all remeshing process does not consider flash of the material. Because as mesh size become swatter, consuming time become larger. But if mesh size is big, there is the defect that the result of analysis is not so accurate. So, new remeshing algorithm is needed to save time and to get more accurate result.

  • PDF

A study of instrumented indentation by finite element analysis

  • Le Minh-quy;Kim Seock-sam
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2003년도 학술대회지
    • /
    • pp.248-258
    • /
    • 2003
  • Finite element computations were carried out to study the indentation by rigid cone with half-angle of $70.3^{\circ}$ for 72 different combinations of elasto-plastic properties that cover the wide range of mechanical parameters of common engineering solid materials. The dimensional analysis and representative strain concept were used in the analysis. It was shown that for the same representative strain value, the loading curvature C can be formulated under two different forms, which are based on two alternative dimensionless functions. The present study's one is simpler than the other previously found by other authors using the similar approach. For a wide range of material's parameters, the hardness-modulus ratio should be a parabolic function of ${\sigma}E$, rather than a power law function earlier proposed.

  • PDF

6061 알루미늄합금 휠 단조공정의 해석 (An Analysis on the Forging Processes for 6061 Aluminum Alloy Wheel)

  • 김영훈;유태곤;황병복
    • 소성∙가공
    • /
    • 제8권5호
    • /
    • pp.498-506
    • /
    • 1999
  • The metal forming processes of aluminum alloy wheel forging at elevated temperature are analyzed by the finite element method. A coupled thermo-mechanical model for analysis of plastic deformation and geat transfer is adapted in the finite element formulation. In order to consider the strain-rate effects on material properties and the flow stress dependence on temperatures, rigid-viscoplasticity is introduced in this formation. In this paper, several process conditions were applied to the dimulation such as die speed, rib thickness, and depth of die cavity. Simulation results are compared, and discussed with each case. Metal flow, die pressure distributions, temperature distributions, velocity fields and forging loads are summarized as basic data for process design and selection of a proper press equipment.

  • PDF