A study of instrumented indentation by finite element analysis
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Abstract-Finite element computations were carried out to study the indentation by rigid cone with half-angle of

70.3° for 72 different combinations of elasto-plastic properties that cover the wide range of mechanical parameters of

common engineering solid materials. The dimensional analysis and representative strain concept were used in the

analysis. It was shown that for the same representative strain value, the loading curvature C can be formulated under two

different forms, which are based on two alternative dimensionless functions. The present study's one is simpler than the

other previously found by other authors using the similar approach. For a wide range of material’s parameters, the

hardness-modulus ratio should be a parabolic function of & /E, rather than a power law function earlier proposed.
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1. Introduction

Indentations have been used since longtime to
(1.

have

determine the material's hardness Actually,

Instrumented indentation techniques been
developed exteqsively to characterize materials [2]. The
hardness and modulus can be determined directly from
the instrumented indentation data [3]. Assaciating to finite
element computations, these techniques can be extended
to extract the mechanical properties of the indented
materials such as yield strength and strain hardening

exponent [4-9,11,14].

Jayaraman et al. [4], using the hardness values
related to different angle conical indenters, gave a
method for determining the non-linear part of stress—
strain curve. Giannakopoulos and Suresh {8] have used

two parts of the loading and unloading Vickers

248

indentation curve for yield stress and hardening exponent
determination. They determine yield stress and stress at
0.29 plastic strain so the hardening exponent can be
determined from these values. But in another paper [9),
the authors specified that their approach could not
distinguish two different materials, which have the same
yield stress Y and the same @, stress obtained for a
plastic strain equal to 0.29. The use of a Vickers indenter
leads to the load—displacement P=Ch? relation (Fig. 1),
which is based on the determination of only one
parameter C and cannot lead to the uniqueness. This
was indicated by [10]. Dao et al. [11] proposed a method
to estimate the mechanical properties from loading
curvature C, the slope of the load-displacement curve at
initial .unloading and the residual indentation depth-to-
maximum indentation depth ratio. This work has been

extended by [6] for different sharp indenters.



Therefore, in order to extract the material's
mechanical properties from the indentation load-
displacement curve, the relationships between the

material's mechanical properties and indentation
parameters such as loading curvature C, hardness,
residual indentation depth- maximum indentation depth
ratio ...have to be formulated. The aim of this work is to

2. Theoretical backgrounds and finite element
model

2.1. Material’s description

Plastic behavior of many engineering solid
materials can be modeled by a power law description, as
shown schematically in Fig. 2. A simple elasto-plastic,

<
true stress—true strain behavior is assumed to be

c=Eg, (o<Y)
c=Kg", (c27)

where E is the Young's modulus, K a strength coefficient,

1

n the strain hardening exponent, Y the initial yield stress

and &, the corresponding yield strain, such that

Y=FE¢g = Ke, 2

Here the yield stress Y is defined at zero offset strain.
The total strain, €, consists of elastic strain £, and
plastic strain &;:
=Lty (3)

&

The representative strain &, defined by Dao et al. [11],

2.2. Review of dimensional analysis
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present a short study on the loading curvature C and
hardness-modulus ratio based on the dimensional
analysis and representative strain concept. The results
are useful for the stress-strain curve determination from

instrumented indentation tests, which will be presented in

another paper.

corresponds to the strain accumulated beyond the yield

point &,

E=L+E. (4)

With (2) and (4), when @>Y, equation (1) becomes

a=Y(1+£,£)
Y

To

©

complete the material

constitutive description, Poisson's ratio is
designated as 1/, and the incremental theory of
plasticity with von Mises effective stress (J
flow theory) is assumed. Therefore, a material's
elasto-plastic behavior is fully determined by
one of three parameter sets (E, ¥/, Y and n), (E,

UV, F.andnor(E, ¥, Yand @Fy).

The loading part of an instrumented indentation can be

expressed as



P=Ch? (6)

where P is the indentation load, h is the penetration depth
measured from surface, and C is a constant depending
on the geometry of the indenter tip and material

properties.

Many authors used dimensional analysis [11-14] to
propose a number of dimensionless universal functions.

Some of them are briefly summarized here for C.

For a sharp indenter (conical, Berkovich or Vickers,
with fixed indenter shape and tip angle} indenting
normally into a power law elasto-plastic solid, the load P

can be written as

P=P(h,E,V,Ei,Vi, Y,n), (7)

where E; is Young's modulus of the indenter, and Vi is its
Poisson's ratio. This functionality is often simplified by
combining elasticity effects of an elastic indenter and an

elasto-plastic solid as

P=P(h.E.Y,n), (8)
where
1 1-v  1-v]
= 9)
E E E.

i

For a rigid indenter, we have E=E since E=x. In the

present paper, the use of E and E* are consistent.

Since a material’s elasto-plastic behavior is
fuily described by one of three parameter sets

(E, ¥,Yandn), (E, ¥, OFrandn)or (E, V/, Y
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and @), alternatively, equation (8) can be

written as
P=P(h,E @..n) (10)
Or P=AnE.VO) (11)

Applying the ]I theorem in dimensional

analysis, equation (9) becomes

*

P=o,h'T],

= .n (12a)
c,
and thus
P E’
C=—=0,[l|—,n (12b)
h” o

where H, is a dimensionless function. Similarly, applying
the IT theorem to equation (10), loading curvature C

may alternatively be expressed as

P E o
C=—=Y[I|—,= (13a)
h v’y
E° Y
or C='f,—=0'rl_lf = — (13b)
h o, O,

By similar way, the hardness-modulus ratio can then be

determined for the case of rigid indenter as follow
ar
-_ n

( £ )

2.3. Finite element model

H o,
e

(14)



Elastic-plastic indentation was simulated using the
axisymmetric capacities of the MARC finite element code.
Since the projected contact area for a conical indenter, a
Berkovich indenter and a Vickers indenter are A=T
ntan?@: A=24.56n% and A=24.50h%, respectively; the
indenter was modeled as a rigid cone with a half-included
angle of 9=70.3°. This angle gives the same area-to-
depth ratio as the Berkovich or Vickers indenter, which
are commonly used in instrumented-indentation
experiments.

The specimen was modeled as a large cylinder
100um in height and 100um in radius represented by
3400 four-node axisymmetric elements (Fig. 3). These
dimensions were found to be large en?ugh to
approximate a semi-infinite half-space for indentations
with maximum depth of éo.s ﬂm, which are considered
in the present work. This was evidenced by an
insensitivity of calculated results to further increase in
specimen size.

Elements were finest in the central contact area and
became coarser outwards. The smallest element size
was 7nm, which enables an accurate determination of the
real impression size. Roller boundary conditions were
applied along the centerline and bottom. Outside surfaces

were taken as free surfaces. The interaction between the

diamond indenter and specimen was modeled by contact

I = ,,_,(I'...A.W = ~ 1131 [ in (
0033 -

s 3 2
k. )} v 1:%.635[fn(
To03s 4 -
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elements with no friction.
A large number of 72 different combinations of elasto-
plastic properties with n ranging from 0 to 0.5 and Y/E
ranging from‘ 0.001 to 0.022 were used in the
computations. This wide range of parameters covers
mostly engineering solid materials. The material's
mechanical properties used in the computations are given
in the table 1.
3. Results and Discussion
3.1 The loading curvature C
The relation in equation (6) has been demonstrated by
numerical simulation for elastic—plastic materiais
[12,13,15-19]. The constant C in equation (8) can be
found in [15-22), based on different approaches.
The loading curvature C was formulated by [15,20-22]

as

-

M, +1n £ (15)
) Y

where M; and M, are computationally derived constants
which depend on indenter geometry; and @2 is the flow
stress at plastic strain  ¢,=0.29.

Recently, Dao et al. [11] using dimensional analysis

and finite element computation proposed the formulae of

C as follow:

E‘

Toois

) } 429367 (16)

? ¢ l;‘
H :m.594[|n( i
LA . To.nis -



where @y is the flow stress at  £=0.033.

It is interesting to note that, after rewriting
Fo20(1+YIFo55) as Y1+ g29/Y) in equation (15), this
equation is consistent with equation (13a).

For this reason, we propose to use the dimensionless
function C/(Y+a,) instead of C/a. as cited by [11], and plot
this function against In(E/Y). The purpose is to find if the
representative strain exists for the formulation of the
parameter C under the form of (15).

Figure 4 presents the evolution of C/(Y+c,) versus
In(E/Y) for three different values of &, (£,=0.002, 0.033 and
0.29). It is interesting to find that the representative strain
in the present case is consistent to £=0.033, which was
found by [11]. Figure 4 shows that for e,<0.033‘.. CAY+07)
increases while increasing n and for £>0.033, CAY+q)
decreases while increasing n.

We should emphasize here the representative strain
depends on the chosen dimensionless function. In the
present study, the dimensionless function for C is
C/Y+o;) versus EYY. In [11], the dimensionless function
for C is C/o; versus E*/o,. However, the representative
strains in two cases are consistent. The reason for this is
that the two dimensionless functions used are equation
(12a) and (11b), which are in the alternative form.

For £=0.033, the dimensionless function C/(Y+c,) can
be interpolated by a linear function of In(E/Y) with the
correlation coefficient R*=0.9971.

—C NN E
(Y+ao.033) Y

where Ny,=13.36 & N, =-25.52

(7
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This description of C is more simple than (16), in which
CiCFo0s3 is expressed by a of third order polynomial of
IN(E*/Y).

The parameter C normalized by E* is plotted in Fig. 4d
for equation (16) and (17). In general, these to curve are

consistent,

3.2 The hardness

The equation (14) is used to consider the evolution of
the dimensionless function H/E versus o /E for various
values of n ranging from 0 to 0.5 as presented in Fig. 5
with three different values of ¢, (e,=0; 0.063 and 0.29).

The representative strain £=0.063 is found in this case.
Figure 5 shows that for ¢<0.063, H/E increases while
increasing n and for £>0.063, H/E decreases while
increasing n. '

When g, =0, 063, all of data points with n ranging from
0 to 0.5 can be well fitted by a second order polynomial

with the correlation coefficient R*=0.9996 as follow:

0_) +A’[&) (18)
e) &

where & =063, A1=-16.24 and A,=2.83.

S. Jayaraman et al. [4] supposed that the characteristic
plastic strain £, is related to the hardness by a power law
function (19) similar to the simple Ramberg—-Osgood

equation (20)

E=L(HIE)" (19)
E=L(a/E)" (20)



Based on these two equations, the hardness-flow
stress and characteristic plastic strain-cone angie
correlations, for conical indenters were obtained from 12
different stress-strain curves, in which the strain
hardening exponent n are 0.1,0.2 and 0.3, using the finite

element method as follow:

8
o

E

H

E

= (21)
where 6=cq7, flow stress at plastic strain g,=0.07; A=1.17
and B=0.92.

This result was shown by [3] to lie between that
predicted by the slip line field theory and the spherical
cavity expansion model.

In the present study, it is found that with & =0, 063, all
of data points with n ranging from 0 to 0.5 can be also
fitted by a power function under the form (21), however
this function cannot be well consistent with certain value
of H/E as shown in Fig. 5c. Fig. 6 shows the comparison
of the present result and [3].

4. Conclusion

Large deformation finite element computations were
carried out for 72 different combinations of elasto-plastic
properties that cover the wide range of mechanical
parameters of common engineering solid materials. This
study focused mainly on the loading curvature C and
hardness-modulus ratio of the indented material based on
the dimensional

analysis and representative strain
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concept. The main results of the present study are

summarized as follows:

1. It is shown that for the same representative
stréin value, the loading curvature C can be
formulated under two different forms, which
are based on two alternative dimensionless
functions. The present study's one is simpler
than the other previously found by Dao et al.
[11] using the similar approach.

For é wide range of material’s parameters, the
hardness-modulus ratio should be a parabolic
function of F JE, rather than a power law
function earlier proposed.

The results are useful for predicting the
indentation loading-displacement curve and
hardness of material when the mechanical
properties of the material are known; and for
the stress-strain curve determination from
instrumented indentation tests, which will be

presented in another paper.
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Fig. 1. Schematic illustration of the indentation load- Fig.2. The power law elasto-plastic stress-strain
displacement curve of an elasto-plastic material. hehavior.
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Fig.3. Finite element meshing of half-space and zoom of the contact zone

Table 1. The material’'s mechanical properties used in the computations

E,GPa 140 140 140 200 200 310 140 200 200 140 310 310

Y/E 0.001 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02 0.022
Strain hardening exponent, n=0, 0.1, 0.2, 0.3, 0.4, 0.5;

Poisson's ratio, I/, was fixed at 0.25.
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Fig.4. a, b, ¢) Evolution of dimensioniess function CAY+ o} versus In(E/Y) using three different values ofe, with

respect to n=0, 0.1, 0.2...0.5; and d} Comparison between the present result and Dao et al. [11]
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Fig.5. Evolution of the hardness-modulus ratic versus owE using three different values of ¢,

with respect to n=0, 0.1, 0.2...0.5.
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Fig.6. Evolution of the hardness-modulus ratio versus o/E
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