• Title/Summary/Keyword: Right censored data.

Search Result 74, Processing Time 0.02 seconds

Bootstrap Confidence Intervals for the Difference of Quantiles of Right Censored Data

  • Na, Jong-Hwa;Park, Hyo-Il;Jang, Young-Mi
    • Communications for Statistical Applications and Methods
    • /
    • v.11 no.3
    • /
    • pp.447-454
    • /
    • 2004
  • In this paper, we consider the bootstrap method to the interval estimation of the difference of quantiles of right censored data. We showed the validity of bootstrap method and compare with others with real data example. In simulation various resampling schemes for right censored data are also considered.

Nonpararmetric estimation for interval censored competing risk data

  • Kim, Yang-Jin;Kwon, Do young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.4
    • /
    • pp.947-955
    • /
    • 2017
  • A competing risk analysis has been applied when subjects experience more than one type of end points. Geskus (2011) showed three types of estimators of CIF are equivalent under left truncated and right censored data. We extend his approach to an interval censored competing risk data by using a modified risk set and evaluate their performance under several sample sizes. These estimators show very similar results. We also suggest a test statistic combining Sun's test for interval censored data and Gray's test for right censored data. The test sizes and powers are compared under several cases. As a real data application, the suggested method is applied a data where the feasibility of the vaccine to HIV was assessed in the injecting drug uses.

Reliability analysis of warranty returns data (품질보증 반환 데이터의 신뢰성 분석)

  • Baik, Jaiwook;Jo, Jinnam
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.4
    • /
    • pp.893-901
    • /
    • 2014
  • A certain number of products are sold each month and some of them are returned for repair. In this study both return rate and cumulative return rate are shown on the graph to show the general trend of how many products are returned as time goes by. Next this type of summary data can be considered as a conglomeration of both left and right censored data. So reliability analysis is attempted for this type of summary data. Lastly, left censored data can be traced to find the exact time period during which the product has been claimed. In that case the left censored data can be taken as failure data. So similar type of reliability analysis is attempted for the resulting right censored data.

Bootstrap Median Tests for Right Censored Data

  • Park, Hyo-Il;Na, Jong-Hwa
    • Journal of the Korean Statistical Society
    • /
    • v.29 no.4
    • /
    • pp.423-433
    • /
    • 2000
  • In this paper, we consider applying the bootstrap method to the median test procedures for right censored data. For doing this, we show that the median test statistics can be represented by the differences of two sampler medians. Then we review to the re-sampling methods for censored dta and propose the test procedures under the location translation assumption and Behrens-Fisher problem. Also we compare our procedures with other re-sampling method, which is so-called permutation test through an example. Finally we show the validity of bootstrap median test procedure in the appendix.

  • PDF

NONPARAMETRIC ONE-SIDED TESTS FOR MULTIVARIATE AND RIGHT CENSORED DATA

  • Park, Hyo-Il;Na, Jong-Hwa
    • Journal of the Korean Statistical Society
    • /
    • v.32 no.4
    • /
    • pp.373-384
    • /
    • 2003
  • In this paper, we formulate multivariate one-sided alternatives and propose a class of nonparametric tests for possibly right censored data. We obtain the asymptotic tail probability (or p-value) by showing that our proposed test statistics have asymptotically multivariate normal distributions. Also, we illustrate our procedure with an example and compare it with other procedures in terms of empirical powers for the bivariate case. Finally, we discuss some properties of our test.

ON THE EMPIRICAL MEAN LIFE PROCESSES FOR RIGHT CENSORED DATA

  • Park, Hyo-Il
    • Journal of the Korean Statistical Society
    • /
    • v.32 no.1
    • /
    • pp.25-32
    • /
    • 2003
  • In this paper, we define the mean life process for the right censored data and show the asymptotic equivalence between two kinds of the mean life processes. We use the Kaplan-Meier and Susarla-Van Ryzin estimates as the estimates of survival function for the construction of the mean life processes. Also we show the asymptotic equivalence between two mean residual life processes as an application and finally discuss some difficulties caused by the censoring mechanism.

Parametric Empirical Bayes Estimation of A Constant Hazard with Right Censored Data

  • Mashayekhi, Mostafa
    • International Journal of Reliability and Applications
    • /
    • v.2 no.1
    • /
    • pp.49-56
    • /
    • 2001
  • In this paper we consider empirical Bayes estimation of the hazard rate and survival probabilities with right censored data under the assumption that the hazard function is constant over the period of observation and the prior distribution is gamma. We provide an estimator of the first derivative of the prior moment generating function that converges at each point to the true value in $L_2$ and use it to obtain, easy to compute, asymptotically optimal estimators under the squared error loss function.

  • PDF

Comparing Imputation Methods for Doubly Censored Data

  • Yoo, Han-Na;Lee, Jae-Won
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.3
    • /
    • pp.607-616
    • /
    • 2009
  • In many epidemiological studies, the occurrence times of the event of interest are right-censored or interval censored. In certain situations such as the AIDS data, however, the incubation period which is the time between HIV infection and the diagnosis of AIDS is usually doubly censored. In this paper, we impute the interval censored HIV infection time using three imputation methods. Mid imputation, conditional mean imputation and approximate Bayesian bootstrap are implemented to obtain right censored data, and then Gibbs sampler is used to estimate the coefficient factor of the incubation period. By using Bayesian approach, flexible modeling and the use of prior information is available. We applied both parametric and semi-parametric methods for estimating the effect of the covariate and compared the imputation results incorporating prior information for the covariate effects.

Regression Analysis of Doubly censored data using Gibbs Sampler for the Incubation period

  • Yoo Hanna;Lee Jae Won
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2004.11a
    • /
    • pp.237-241
    • /
    • 2004
  • In standard time-to-event or survival analysis, the occurrence times of the event of interest are observed exactly or are right-censored. However in certain situations such as the AIDS data, the incubation period which is the time between HIV infection time and the diagnosis of AIDS is usually doubly censored. That is the HIV infection time Is interval censored and also the time of the diagnosis of AIDS is right censored. In this paper, we Impute the Interval censored infection time using the conditional mean imputation and estimate the coefficient factor of the regression analysis for the incubation period using Gibbs sampler. We applied parametric and semi-parametric methods for the analysis of the Incubation period and compared the results.

  • PDF

Mixtures of Beta Processes Priors for Right Censored Survival Data

  • Kim, Yongdai
    • Journal of the Korean Statistical Society
    • /
    • v.30 no.1
    • /
    • pp.127-138
    • /
    • 2001
  • In order to combine parametric and nonparametric approaches together for survival analysis with censored observations, a new class of priors called mixtures of the beta processes is introduced. It is shown that mixtures of beta processes priors generalized the well known priors - mixtures of Dirichlet processes, and they are conjugate with right censored observations. Formulas for computing the posterior distribution are derived. Finally, a real data set is analyzed for illustrational purpose.

  • PDF