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ON THE EMPIRICAL MEAN LIFE PROCESSES FOR
RIGHT CENSORED DATA

Hvo-IL PARrk!

ABSTRACT

In this paper, we define the mean life process for the right censored
data and show the asymptotic equivalence between two kinds of the mean
life processes. We use the Kaplan-Meier and Susarla-Van Ryzin estimates
as the estimates of survival function for the construction of the mean life
processes. Also we show the asymptotic equivalence between two mean
residual life processes as an application and finally discuss some difficulties
caused by the censoring mechanism.
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1. INTRODUCTION

The estimation of the mean survival time for right censored data has been
long considered by many authors. However the results have not been so satis-
factory because of the possibility that the largest observation may be censored.
Only Susarla and Van Ryzin (1980), and Gill (1983) obtained the most success-
ful results using the different estimates for survival function. Susarla and Van
Ryzin used a variant of the Bayesian estimates proposed by Susarla and Van
Ryzin (1976) whereas Gill used the Kaplan-Meier estimate. We note that the
two estimates are asymptotically equivalent in the sense that the results for the
asymptotic normality coincide. For the asymptotic normality, Gill applied condi-
tions in a natural way but Susarla and Van Ryzin introduced a set of assumptions
in a complicated manner. Furthermore, since Gill used the Kaplan-Meier esti-
mate, the martingale theory based on the point processes could be adopted for
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the investigation of the large sample behavior. On the other hand, if we look more
closely into the Susarla-Van Ryzin estimate, then we will find that the estimate
is well defined besides the biasedness problem since the values of the Susarla-Van
Ryzin estimate become 0 beyond the largest observation with disregard that it is
censored or not. Therefore it would be worthwhile to work with the two estimates
more deeply. In this paper, we define the mean life process and show the two
mean life processes based on the two estimates of survival function are asymptot-
ically equivalent and apply this asymptotic equivalence to show the equivalence
of two estimates of the mean residual life processes based on the Kaplan-Meier
and Susarla-Van Ryzin estimate.

2. MAIN RESULT

Let Xi,...,X, be a random sample of non-negative survival times with a
continuous survival function S and Y7, ...,Y,, an independent random sample of
non-negative censoring times with an arbitrary distribution function G. Since the
right censoring schemes are involved, we only observe (T1,61),...,(T,, ), where
T; = min{X;,Y;} and é; = I(X; <Y;) for each i. I(-) is an indicator function.
We assume that the survival function S has a finite mean. Then it is well-known
that

B(X) = /O ~ 2dF(z) = /0 " §(2)de

since the life time random variable is non-negative, where F(-) =1 — §() is the
distribution function of X. Let S, and S, be the Kaplan-Meier and Susarla-Van
Ryzin estimates of S, respectively. Then we define two mean life processes, fi, ()
and fi,(t) based on S, and S, as follows: let for each t € [0,7),

t ~
in(t) = v /0 (8n(u) — S(u))du

and

fin(t) = Vi /0 (8n(u) — S(w))du,

where 7 = inf{t : 1~ H(t) = 0} with the notation that 1 — H(t) = S(t)(1 - G(t)).
Also let 75 = inf{t : S(t) = 0} and 7¢ = inf{t : 1 — G(t) = 0} for the later
use. We note that H is continuous from the assumption that S is continuous.
Then we will show that the two processes, fin(¢) and [,(t), are asymptotically
equivalent in the following sense.
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THEOREM 2.1. Let 7 = 75 < 7g. Then we have that for every ¢ > 0,
lim P ( sup | an(t) — an(t)| > e> = 0.
n—o0 OSt<T
Before we prove Theorem 2.1, first of all, we obtain a relation between S, and

S,. We note that from equation (7.0.11, p.295) in Shorack and Wellner (1985)
that

5.(t) = 2w >4 1 {HI[%):O]}

n ) n—7+1
JTst g

=sa-Gw 1 {1+327d)

3T <t n-jtl

) 16y = 0]
=50 T {1- 25 )

j:T(j)St

where G is the Kaplan-Meier estimate of G obtained by switching the roles of life
time and censoring random variables, T;) is the 4 largest observation among
T, ..., T, and §; is the concomitant of the 4 order statistic 1), that is 6(;y = 4;
if T(jy = T;. Therefore we have that

800~ 50 = 8.0 [1 1o M}}

Then we have

We note that K,(t) > 0 for all ¢ € [0,7). In the following lemma, we obtain a
useful bound for K,(t).

LEMMA 2.1. For every t € [0,7), we have

ko Hn(T(ko)) 1
Ka(t) < nn—ko+1) = n(1 - ffn(T(ko)—)) : n(l — ﬁn(T(ko)_)),
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where ky = max{j : T(;y < t, ;) = 0} and H, is the empirical distribution
function of H.

Proor. First of all, we note that

gt

i=1

S P O Y PR
=1—(1+%> (1—”—_#—1)

ko
n(n—ko+1)

Also we note that since

I {5 e I () 2o

7Ty <t 7T st
we have
1- ]1 {1— 7 2}51— 11 {1————.—2}.
G CET RNy ik U =5+
Thus Lemma 2.1 follows. O

We note that Lemma 2.1 shows that when no censoring occurs, the two esti-
mates exactly coincide since kg = 0 for all ¢t € [0,7). Now we prove Theorem 2.1
as follows.

LEMMA 2.2. Let 1 = 15 < 7¢. Then we have that for every e > 0,

lim P<\/r_z sup Kn(t) > e) =0.

n—00 OSt<T(n)

PROOF. From Lemma 2.1 and the fact that 1/(1—H,(t—)) is a non-decreasing
function in ¢, we note that

1
sup Kp(t) < <
0<t< Ty n(l — Hn(Tkpy—)

b
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where ki = max{j : T(;) < T(n), d(j) = 0}. Therefore it is enough to show that

1
P (— - ! > e> —+ 0.
V11— Ho(Tppy—)

In order to show this, we note that 1—G(7) > 0. Also we note that 7|, converges

~

with probability one to 7 and so 1 — G (T(,,)) converges with probability one to
1 — G(r) > 0. However if é(,) = 0, then 1 — Gn(T(n)) = 0. Therefore since
1 — Gp(T(n)) = 1 = Gn(T(xg)) and 1 — Gn(T(xz)) converges with probability one
to 1 —G(7) > 0, ki should become proportional to n in the long run. Otherwise,
1- én(T(lcS)) can not converge with probability one to 1 — G(7) > 0. This in
turn, implies that 1 — H,, (T(kg)—) =1 -k /n converges with probability one to
1 —u, with u € (0,1). Therefore Lemma 2.2 follows by applying the weak law of

large numbers. |

PROOF OF THEOREM 2.1. Since for each u € [0,7),
t ~
| inlt) = im0 < Vi [ Sp(u)K(w) du
0
¢
< ViKa() [ Salu) du,
0
and fot S, (u) du is non-decreasing in ¢, we have that

sup | fin(t) — fin(®)] < v sup Kn(t) /0 " Su(u) du.

0<t<T 0<t<T

For each n, we note that

vn sup Ky(t) =+vn sup Kp(t).
o<i<r OSt<T(n)
Also since [ Sn(u) du converges with probability one to f; S(u)du < [ S(u)du,
which is finite, from Lemma 2.2 and Slutsky’s Theorem, we see that for every
€ > 0,

lim P( sup | fin(t) — @n(t)| > e> =0.
n—0o0 OSt<T
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3. APPLICATION TO THE EQUIVALENCE OF TwO MEAN RESIDUAL
LIFE PROCESSES

The residual life time is an important biometric function to be estimated.
The characterization and properties for the mean residual life time are well sum-
marized in Hall and Wellner (1981). Yang (1978) proposed an estimation for
complete data. For the right censored data, Kumazawa (1987) and Park et al.
(1993) proposed estimates based on the Kaplan-Meier estimate and a version of
the Bayesian estimate for the survival function, respectively. However, we note
that their asymptotic results are equivalent. In this section, also we show the
asymptotic equivalence between two forms of empirical mean residual life pro-
cesses using the main result. In general the mean residual life time is defined as
follows: for any survival random variable T' with survival function S,

1 o0
e(t)=E(T —tT >t =——~——/ S(u) du
(6) = BT~ 4T > 1) = 55 |
for all ¢t € (0,00). We assume that e is bounded on [0,7). The estimate of
Kumazawa, €,(t) and the estimate of Park et al., é,(t) are as follows:

. 1 Ty N Tny
al) =5 /t $u(0) du and ) = 2 /t 8, (u) du.

Then the two empirical mean residual life processes are defined as follows based
on é,(t) and é,(t):

Lult) = Vi (én(t) - e(t)) and La(t) = Vi (ealt) — e(2)).

We now show that L, (t) and L, (t) are asymptotically equivalent in the following

sense:

THEOREM 3.1. Suppose that e(-) is bounded on [0,7) and 7 = 75 < 7. Then
we have that for every e > 0

lim P( sup | Ln(t) — La(t)] > e> = 0.

R0 0<t<r

Proor. From the definition,

_ s _;/FL_ Tin) ., B vno [To
Lntt) = Intt) = 270 /t Salw) du— 20 /t S, (u) du
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= ’I’LKn(t) T(") S U U \/ﬁ T(") G u) — S u U
= \/—S'n(t)/t Sp(u) du+ An(t)/t Sn(u) = Sp(u)) d
_ ) [T v [T w8
=+/n gn(t)/t Sp(u) du + S'n(t)/t K, (u)Sn(u) du
< VK (t)en(t) +vn sup  Kp(u)én(t)

t<uLT ()

Therefore we have that

sup | Ln(t) = La(t)] < Vi sup Kqn(t) sup én(t)

0<t<T(ny 0<t<Tm) 0<t<T(n)
+vn sup Kp(t) sup é,(t).
0<t<T ) 0<t<T )y

Therefore by Lemma 2.2, it is enough to show that é,(¢) and é,(¢) are bounded
to apply the Slutsky’s Theorem. Since e(-) is bounded on [0,7) and é,(t) and
én(t) can take values at most n different values on [0,7), it easy to show that
én(t) and €,(t) are bounded on [0, 7). O

4. DISCUSSION

In the previous two sections, we showed the asymptotic equivalences only for
the case of T = 79 < 7¢. In order to complete our discussion, we should have
shown that the asymptotic equivalences for the case of 7 = 7¢ < 75. In this case,
we may show the asymptotic equivalences by choosing a sequence (M,,) instead
of using T{,) such as M, — 7. Then the choices of the sequence completely
depend on the censoring distributions. This can be seen from Lemma 2.2 since
the conclusion of Lemma 2.2 completely relys on the censoring manners at the
tail part of the whole observations. However since our main concern is for the
survival function of the life time not for the distribution function of the censoring
time, we do not handle this matter.

The estimations of the mean life time, mean residual life time and the mean
difference in two sample problem based on right censored data, have been con-
sidered for a long time in survival analysis. However up to now, the results are
not so quite satisfactory because of the possibility of the censoring of the largest
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observation. Therefore still a lot of results are being introduced to overcome this
difficulty. However for any case, their asymptotic properties coincide. Therefore
it would be worthwhile to show the equivalence among the results.
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