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NONPARAMETRIC ONE-SIDED TESTS FOR
MULTIVARIATE AND RIGHT CENSORED DATA'

Hyo-IL PARK! AND JoNG-Hwa Na?

ABSTRACT

In this paper, we formulate multivariate one-sided alternatives and pro-
pose a class of nonparametric tests for possibly right censored data. We
obtain the asymptotic tail probability (or p-value) by showing that our pro-
posed test statistics have asymptotically multivariate normal distributions.
Also, we illustrate our procedure with an example and compare it with other
procedures in terms of empirical powers for the bivariate case. Finally, we
discuss some properties of our test.
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1. INTRODUCTION

Suppose that a laboratory has developed a medicine or a treatment which
may have some effects on several (> 2) symptoms simultaneously and conducted
a drug-placebo experiment. The data consist of d dimensional vectors of which
some component may be right censored. In this situation, one may perform a
nonparametric test for checking the equality between two multivariate survival
functions under the general alternatives. However, it is often of interest to test
if the medicine or treatment has significant effects on some of the d symptoms.
"This corresponds to the so-called one-sided testing problem for multivariate data.
For example, consider the data from the National Cooperative Gallstone Study
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(NCGS) (¢f. Schoenfield et al., 1981). To identify the efficacy of chenodiol used
in a treatment for cholesterol gallstones, Wei and Lachin (1984) raised an issue
whether there exists any difference in progression of gallbladder disease between
the control and the high dose groups. Here progression of the disease is indicated
by occurrence of gallbladder pain or presence of pain accompanied by other symp-
toms that require surgical removal of the gallbladder (cholecystectomy). Each
observation in either group contains the time lengths of experiencing gallbladder
pain and cholecystectomy. Therefore it is more appropriate for the NCGS data to
consider one-sided alternatives rather than general ones. Wei and Lachin (1984)
proposed a testing procedure in this direction based on sum of d univariate test
statistics.

For the complete bivariate data case, Bhattacharyya and Johnson (1970) pro-
posed a nonparametric test for the ordered alternatives based on the layer ranks
(¢f. Barndorff-Nielsen and Sobel, 1966). Also, Johnson and Mehrotra (1972)
developed another nonparametric test based on linear rank statistic (¢f. Puri
and Sen, 1971). The limiting distributions of these test statistics are univari-
ate normal. Boyett and Shuster (1977) proposed a nonparametric test based on
maximal T-statistic but did not provide the limiting distribution. More recently,
Park et al. (2001) suggested a nonparametric procedure based on the univariate
nonparametric test statistics and showed its asymptotic normality. All the above
mentioned works, adopt the permutation principle to obtain the exact null dis-
tribution for the small sample case. For censored data, Wei and Knuiman (1987)
proposed a nonparametric procedure modifying the idea of the layer ranks for
censored data. An extension of Gehan test for bivariate data can be also consid-
ered. However, since the censoring distribution is involved even under the null
hypothesis, an exact null distribution based on the permutation principle may
not be available. Hence, the asymptotic univariate normality was derived. We
note that extensions to the cases of three or higher dimension for the procedure
of Wei and Knuiman (1987) are not easy since the method of the layer ranks may
not be applicable to the data of three or higher dimension.

In this paper, we propose an asymptotically nonparametric test procedure for
censored data using the method adopted by Boyett and Shuster (1977). Our pro-
cedure can be applied to the data with three or more dimensions. We show that
the limiting distributions of our proposed test statistics are related to multivariate
normal distribution. Therefore calculation of the limiting tail probability (or p-
value) for any given data depends completely on the software such as S-PLUS (c¢f.
S-PLUS 6 Programmer’s Guide, 2001) or My (cf. Neale et al., 1998) program.
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We illustrate our procedure using the NCGS data. We compare the performance
of our procedure with that of Wei and Knuiman (1987) in terms of empirical
powers through computer simulations. Also we discuss briefly some properties of
our procedure. Finally we derive the limiting covariance and the limiting power
of the test under the Pitman translation alternatives in the appendices.

2. NONPARAMETRIC ONE-SIDED TESTS FOR RIGHT CENSORED DATA

Let {X;; = (Xi1j,...,Xig)",J = 1,...,n;} be independently and identically
distributed d-variate life time random vectors with non-negative components and
a continuous distribution function Fj(z1,...,z4), © = 1,2. Also, let {U;; =
(Usrj,--- Uigs)',3 = 1,...,n:} be independently distributed d-variate censoring
random vectors with an arbitrary distribution function G;(z1,...,z4), 7 = 1,2.
In order to avoid the identifiability problem, we assume that the life time random
vectors are independent of the censoring random vectors. Because of the random
censoring scheme, we may only observe for each k, kK = 1,...,d, that

Tikj = min( X5, Usy) and Gy = I(Xig; < Usgj)

for i = 1,2 and j = 1,...,n;, where I(:) is an indicator function. Since we
are concerned about the location translation model, we assume that there exists
0 =(01,...,05) € R with 6, > 0 such that

F(t)=F(t—8)
for all t € R, Based on this model, we formulate a hypothesis as follows:

H0:91 SO,QQSO,...,@dSO

vs. Hj:at least one of 6;’s is strictly larger than 0.

Before constructing the test statistics for this problem, we introduce some
notationsj For each k** component, let Nj(t) = Z?;l I(Tix; <t, 0jx; = 1) be
the number of deaths that occur no later than time ¢ in group ¢ and Yj.(t) =
> ity I(Tikj > t), the corresponding number at risk by time t. Also, let Qg be
a bounded non-negative predictable process which is a function of observations
and satisfies Qx(¢) = 0 whenever min{Yix(t), Yox(t)} = 0. Furthermore, let

n = ny + ng and
- *© ANy (t)  dNok(t)
Tin = \/‘/0 Qk(t){ 0 Vor @) } (2.1)
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We note that T, forms a class of linear rank statistics by varying Q. For
example, the Gehan and log-rank statistics correspond to Q; = Y1;Yor/n? and
Qr = Y11.Yor /{n(Y1x + Yox)}, respectively. Also, we note that Tk,’s are used for
testing H(’f : 0 = 0 against H{“ : Ok # 0 and the testing rule is to reject H(’)C in
favor of H{“ for large values of |Tj,|. In order to obtain the critical value for any
given significance level or p-value, we need the null distribution of T},. Since
the censoring distribution is involved in the distribution of T}, even under Hg,
we shall obtain the limiting distribution using the large sample approximation
theory. For this, we introduce some additional notations. For each 7 = 1,2 and
foreach k = 1,...,d, let Ay denote the k** marginal cumulative hazard function.
Also, let Fj;. and G be the k' marginal distribution functions for F; and G,
respectively.
Now, we collect the assumptions below:

(Al) n/n; — p; € (1,0), a8 n —> 00,1 = 1,2;

(A2) For each k, the random weight function @) converges in probability to a
function g uniformly on each closed subinterval of [0, 00) as n — co.

Under (Al) and (A2), we have the following well-known result, which is due
to Gill (1980).

LEMMA 1. Suppose (A1) and (A2) hold. Then, under HE : 6y = 0 the test
statistic Ty, converges in distribution to a normal random variable with mean 0
and variance az, where

2
qy
= i 1 — AAy)dA, 2.2
ot = zp/ P oy (L~ Adu)dan (22
and AN (t) = Ay(t) — Aix(t—) for each i =1,2 and k=1,...,d.

We need a consistent estimate G2 of o? for implementing Tk, to real testing
problems. We use the following consistent estimate of a,%:

ANy (Tiu;) — 1
~2 § : § : lk] ik\1Likj
0 = ; y 2-
k " { )zk(jzk]) 1 }5Zk], ( 3)

11]1 Zk]

where AN, (t) = Ny (t) — Ny (t—) for each ¢ and k.
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Without loss of generality, we assume that one rejects H(’f : 8, < 0 in favor of
the alternatives H {“ : 0 > 0 for large positive values of Ty,. We propose a non-
parametric one-sided test statistic for censored and multivariate data following
Boyett and Shuster (1977) as follows:

T, = max <&,...,&> , (2.4)

o1 04

where &), = (2)'/2 for each k. We take the maximum among all the d studentized

univariate test statistics. We note that the weight function @y is allowed to vary
with component. When H; is true, at least one of (T}, /6%)’s would tend to have
large positive value. Thus we may reject Hy for large values of T}, in favor of Hj.

In order to determine the critical value C,(«) for any given significance level
« or obtain the p-value, we need to derive the null distribution of 7},. For this
end, we note that for any ¢ > 0,

T, T,
P(Tn>t)=P{max<#,...,#) >t}

a1 gd
T T,
:I—P{ma)((#,...,ﬁ)gt} (2.5)
J1 Od
:1—P<¥5t,...,2‘iﬁ§t>.
g1 gd

We have to consider the limiting distribution. To begin with, we obtain the
following asymptotic result for (Tip,...,Ty,)" from Lemma 1.

THEOREM 1. Under Hy with (A1) and (A2), (Tin,...,T4n) converges in
distribution to a d-variate normal random vector with mean zero vector and co-
variance matric (Og1)ki=1,..d-

ProOF. It follows from Lemma 1 that any linear combination of T1,,, ..., T4,
is asymptotically normally distributed if the limiting covariance matrix exists.
Therefore from Cramér-Wold device (cf. Shorack and Wellner, 1986), Theorem 1
follows if -we show that oy, is the limit of Cov(Ty,, T},) for k # l. The expression
and derivation of oy will be given briefly in Appendix A. a

In order to implement our procedure, we have to obtain a consistent estimate
of (ok;). It is enough to obtain a consistent estimate of oy for k£ # [. For each ¢
and k, let

Vi) = i: Qk(Tikj)  Ging I (Tirej < s).

Yik (Tik;) Yir(Tixy) (26)

i=1
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A consistent estimate oy; of oy is defined by

Ukl_nzzyuc (Tll Oikj0it; — nzz zk] (T15)0ik

zk] l zk]
i=1 1
- (27)
zl]
ZZ zk] zly'*'nzzvzk zlc] zl zl])
i=1 j=1 ”J i=1 j=1

The proof for the consistency of y; can be found in Wei and Lachin (1984).

By Theorem 1 and Slutsky’s theorem, one can easily show that the random
vector (T1n/01,...,Tan/04)" converges in distribution to a d-variate normal ran-
dom vector with mean zero vector and covariance matrix R = (ry;) whose all
diagonal elements equal one. The off-diagonal elements can be consistently es-
timated by 7y = 0y /(0x0;) for k # . Thus for t > 0, we may obtain the tail
probability, P(T;, > t), from the d-variate normal distribution with the estimated
covariance matrix R = (k). In the case of bivariate normal distributions with
mean zero vector and unit variances, Owen (1962) tabulated cumulative proba-
bilities when both coordinates have the same values. However, the tables are not
enough since they do not contain the cumulative probabilities for all the values of
correlation coeflicient. We may approximate P(T;, > t) by using the pmvnorm
function provided by S-PLUS for bivariate data. For the d(> 3)-variate case, we
may use the My program (cf. Neale et al., 1998). The program and documenta-
tion can be downloaded from the website http://www.vipbg.vcu. edu/mzgusi.

3. EXAMPLE AND SIMULATION RESULTS

For illustration of our procedure, we consider a part of the NCGS data, which
are given in Table 1 of Wei and Lachin (1984). In the table, each observation in
the placebo (n; = 48) and high dose (ny = 65) groups consist of the time lengths
of experiencing gallbladder pain (Xj;i;) and cholecystectomy (Xio;). From the
data, it would be of interest to see if there is any effect of the drug chenodiol on
the gallbladder disease. For the general alternatives, Wei and Lachin (1984) ob-
tained 0.042 and 0.145 as the p-values for the Gehan and the log-rank score tests,
respectively. For the one-sided alternatives, the procedure by Wei and Knuiman
(1987) gives 0.037 as its p-value. For our testing procedure using the Gehan score
for both components, the values of T}, and py2 are 2.4579 and 0.637, respectively.
The corresponding approximate p-value is 0.013, which shows a strong evidence
of delays of disease progression of gallbladder pain or cholecystectomy for the
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high dose group. If we adopt the log-rank score for both components, we obtain
T, = 1.9735 and pys = 0.605. The corresponding approximate p-value is 0.042.
We note that our procedure compared to Wei and Lachin (1984)’s achieves much
smaller p-values and that the test based on the Gehan score is more powerful
than the one based on the log-rank score in this case. This result was also noted
by Wei and Lachin (1984). By some suitable choice of scores, we may improve
the power of test. In this example, we used the S-PLUS for the numerical results.

Next, we compare the performance of our test with that of Wei and Knuiman
(1987)’s (U,) in terms of empirical powers through simulations with S-PLUS.
This is done for bivariate distributions. In the following tables, we present the
empirical powers for various censoring distributions and a fixed the life time
distribution. The results are based on 1,000 simulations with sample sizes n; = 30
and ny = 40. The simulations were carried out under the nominal significance
levels(a) 0.01 and 0.05. In the tables, T,,(Gehan) and T, (log-rank) denote the
test statistics which use the Gehan and log-rank scores, respectively, for their
components. For the life time distribution, we used the Marshall-Olkin type of
exponential distribution, whose joint survival function is as follows: for each ¢,
i=1,2,

S(zi, zi2) = P(Xi1 > 21, Xig > 242)

. 3.1
= exp{—Ai1Zi1 — Ai2®i2 — A3 min(z;), zi2) }. (3:1)

We generated the life time random vectors, (X;1,X52), with Ajj = A2 = Aj3 =
1 for each ¢ and took 8; = 0.0,0.1,...,0.7 with 6> being fixed at zero. For
the censoring distributions, we considered the bivariate exponential distributions
whose joint survival functions are of the form,

C(uq,ui2) = P(Ujt > uin, Uig > uin) = exp (—Aituqa — Aiguq2). (3.2)

We considered four different cases: A1 = Aja = Agp = Aoo = 15 A3 = g = 1
and )\12 = )\22 = 2; )\11 = )\12 = 1 and /\21 = /\22 = 2; )\11 = /\22 =1 and
A2 = A91 = 2. The results are given in Tables 1 through 4. The tables show
the same trends regardless of the nominal significance level. In all tables, we
note that our procedure achieves better empirical powers than U, regardless of
the censoring patterns for both scores. This suggests that our procedure with
a suitable score may be a reasonable alternative for the one-sided test of the
multivariate and possibly censored data. Finally, we note that the 7,,(Gehan) test
gives better empirical powers than 7, (log-rank) and achieves well the nominal
significance level.
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TABLE 1 Comparison of empirical powers when \1; = A2 = Az = A =1

Test (61,62)
Statistic oY (0,0) (0.1,0) (0.2,0) (0.3,0) (0.4,0) (0.5,0) (0.6,0) (0.7,0)
0.01 { 0.001 0.020 0.114 0271 0424 0589 0.752 0.797
U, 0.05 | 0.046 0.209 0464 0694 0.848 0936 0972 0.982
0.01 | 0.007 0.107 0470 0.827 0.956 0.992 0.997 1.000
T, (Gehan) 0.05 | 0.046 0362 0780 0958 0.993 1.000 1.000 1.000
0.01 | 0.008 0.069 0241 0477 0718 0.836 0942 0971
T.(log —rank) | 0.05 | 0.059 0.203 0.490 0.748 0.905 0.949 0.985 0.996
TABLE 2 Comparison of empirical powers when A1 = A1 = 1 and A2 = Aog = 2
Test (61,62)
Statistic o (0,0) (0.1,0) (0.2,0) (0.8,0) (0.4,0) (0.5,0) (0.6,0) (0.7,0)
0.01 | 0.004 0.016 0.064 0.156 0.253 0.364 0454 0.536
U, 0.05 | 0.029 0.166 0.360 0.554 0.768 0.849 0917 0.945
0.01 | 0.006 0.109 0.455 0.806 0.958 0.993 0.998 1.000
T, (Gehan) 0.05 { 0.049 0.331 0777 0.956 0.996 1.000 1.000 1.000
0.01 | 0.010 0.061 0.246 0.488 0.715 0.867 0946 0.969
T.(log —rank) | 0.05 | 0.061 0.201 0.407 0.736 0.902 0.969 0.985 0.994
TABLE 3 Comparison of empirical powers when Aj1 = A2 = 1 and A2 = A2z =2
Test (61,02)
Statistic @ (0,0) (0.1,0) (0.2,0) (0.3,0) (0.4,0) (0.5,0) (0.6,0) (0.7,0)
0.01 | 0.003 0.029 0.116 0.232 0400 0.537 0.627 0.681
U, 0.05 | 0.035 0.203 0461 0.703 0.874 0939 0971 0.984
0.01 | 0.006 0.113 0.515 0.855 0964 0966 1.000 1.000
T, (Gehan) 0.05 | 0049 039 0.823 0968 0.999 1.000 1.000 1.000
0.01 | 0.010 0.059 0.259 0.520 0.736 0.896 0.961 0.983
Tn(log —rank) { 0.05 | 0.055 0.226 0.531 0.775 0.921 0.976 0.993 0.999
TABLE 4 Comparison of empirical powers when Aj1 = dgz =1 and A1z = A2; =2
Test (01,92)
Statistic o | (0,0) (0.1,0) (0.2,0) (0.3,0) (0.4,0) (0.5,0) (0.6,0) (0.7,0)
0.01 | 0.005 0.025 0.101 0.227 0.341 0.444 0.534 0.601
Un 0.05 | 0.032 0.201 0449 0.688 0.855 0.938 0.962 0.981
0.01 | 0.008 0.118 0.518 0.846 0.973 099 0.999 1.000
T,(Gehan) 0.05 | 0.044 0.367 0815 0.977 0.999 1.000 1.000 1.000
0.01 | 0.008 0.060 0.252 0.538 0.763 0.886 0.953 0.989
T.(log —rank) | 0.05 [ 0.068 0.223 0.517 0.811 0.920 0.966 0.991 0.997
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4. CONCLUDING REMARKS

As noted before Ty, can produce a class of linear rank statistics by varying
the weight function @ for the univariate case. Prentice (1978) derived another
type of linear rank statistics for right censored data from the marginal likelihood,
which can produce locally most powerful tests. Mehrotra et al. (1982) and Park
(2000) showed that those two types of linear rank statistics are equivalent. One
may improve the power by choosing suitable @y for each component. This is
the reason why we allow Qi to vary with component. Also, we note that the
covariance matrices are not required to be nonsingular since we do not consider
the quadratic form of test statistics which requires the inverse matrix of the
covariance matrix. This may be an advantage of our approach. We note that for
each k, the sequence (T},) is consistent for testing Hg : B, < 0 against the one-
sided alternatives HY : 6 > 0. This implies that the sequence (T},) is consistent
for the one-sided test of the multivariate data.

For the limiting power of our test, we consider the following Pitman transla-

tion alternatives: For each n and for each k, £k =1,...,d, let
Ck
Hy, : Oy = —, 4.1
where ¢, is a fixed positive real number. Also let 8,, = (61,,...,04,). Then we

may obtain the limiting power of the test as follows:
lim P {Tn > Cn(e)} =1 - 2r(Cla) —crmy, ..., Ca) —cama),  (4.2)
n—00

where ®g is the d-variate normal cumulative distribution function with zero mean
vector and covariance matrix R with unit value for the diagonal elements. Here,
C(a) satisfies limp 00 P{T,, > C(®)} = @ and my, = limp_e0 #,,(0)/{v/10kn (0)}
for each k. The derivation of the limiting power appears in Appendix B.

Finally, we note that the limiting distribution of U, is univariate normal.
Therefore the efficacy for U, would be the non-centrality parameter value of the
chi-square distribution with one degree of freedom. However, as we already have
seen, the limiting distribution of (7}, ...Ty,) is multivariate normal. Thus, the
efficacy of the tests based on T), would be the non-centrality parameter value of
the chi-square distribution with two degrees of freedom in the case of bivariate
data. The comparison of the performance between the two tests in terms of effi-
cacy may not be easily done. This is the reason why we compare the performance
by computer simulations only.
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APPENDIX

A. Proof of Theorem 1

In this appendix, we derive the limiting covariance oy, for I # k. First of all,
we note that under Hy,

Ten = \/ﬁ/ooo Qk(t){dN““( ) dNg(t )}

Yie(t)  Ya(?)
© Qk(t) Qk t)
= /nn —dM ),
Yo Y(® 1(t t
where Mk (t) = (1//ni){ Nk (t) fo k(w)dA;x(u)} is a martingale for each 7 =
1,2. Thus, under Hy, we have
Qk Qi Qk Q1

COV(Tkn, Tln) = nnlE( dMlk —dM1> +7ZTI2E( ——dMQk ——dMg)

since My, and My (also My and My) are perpendicular. One may obtain
the following expression for oy by applying the Fubini’s theorem and Slutsky’s
theorem under (Al) and (A2):

Okl = sz{// 2k 3);]:” SGi(s,t)d? Fi (s, 1)

"Tzk
// qugz;?l zkl(9 t)Sik (t|s)dFix (s)dAy(t)
// ﬂ(f:gz;féf SS1(5,)Siri (s]t)dFy (t)d Ak (s)
(s)
(s)

qr(s qz(
: A .
+ [ 2RO s Ot el )ama(t) .
where
Siki(s,t) = P(Xi1 > 5, Xin > t), SSi(s,t) = P(Uigr > 5, Uiy > t),
Sik(tls) = P(Xin > t| Xik1 = 3), Siki(s|t) = P(Xig1 > s|Xin = 1),
mik(t) = {1 — Fie(£) }{1 — Gix(t)}.
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B. Proof of (4.2)

In this appendix, we derive the limiting power of our proposed test under the
Pitman translation alternatives. First of all, we note that

o) = E(TinlHin) = =] [~ Qo { G20 - G, |

_ \/5/000 Qr(t)d{ Ak (t) — Age(t)[Hin}

- \/ﬁ/ooo Qk(t){)\lk(t)dt W %)dt\Hm}.

We see that
d:ukn(Hln

dck

= [ @uoieat £
cp=0
where X| is the derivative of Ajx. Also, we note that

02 (Hip) — opf and og(Hin) — op for k # 1.

Thus, we obtain the limiting power for (7;,) as follows from the fact that &y
and Oy, are the consistent estimates of o and oy, respectively. In the follow-
ing, tkn(Okn), o2, (0kn) and R(6,) denote the mean, variance and correlation
coefficient matrix, respectively, under the Pitman translation alternatives.

lim Py {T, > C(a)}

Tin T,
=1- lim Pg{a <C(a),.‘.,,\—dn<0(a)}
in

n—oQ O’dn

=1~ lim Py, { . Uln(eln) < C(O() Oin ﬂln(eln) L
1

n—oo (eln) 01(9171) 0’1(9111) ’
= HKan(0dn) o) Odn___ Han(Gan)
Gd(9dn) < )Ud(9dn) o4 (Oan) }

=1 (I)R(C(a) — clml,...,C(a) - Cdmd)'
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