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Abstract

A competing risk analysis has been applied when subjects experience more than
one type of end points. Geskus (2011) showed three types of estimators of CIF are
equivalent under left truncated and right censored data. We extend his approach to an
interval censored competing risk data by using a modified risk set and evaluate their
performance under several sample sizes. These estimators show very similar results. We
also suggest a test statistic combining Sun’s test for interval censored data and Gray’s
test for right censored data. The test sizes and powers are compared under several
cases. As a real data application, the suggested method is applied a data where the
feasibility of the vaccine to HIV was assessed in the injecting drug uses.

Keywords: Competing risks, interval censored data, inverse probability weighting, log
rank test, product limit estimator.

1. Introduction

Interval censored failure time data are composed of two inspection times including a failure
time. For example, in an AIDS cohort study, a HIV infection is detected through patient’s
blood tests. The last test time with a negative response and the first test time showing a
positive response became an interval censored data in order to estimate the distribution
of the infection time. Sun (2006) provided a comprehensive overview for interval censored
failure time data including current status data and panel count data. In many clinical and
epidemiological studies, subjects can experience more than one causes and the related data
is formatted as competing risk data. Competing risks can be represented either with a latent
failure approach or with a multistate model (Kalbfleisch and Prentice, 2002; Andersen et
al., 1993). Two commonly referred statistics are the cause specific hazard (CSH) and the
cumulative incidence function (CIF). The CSH is the occurrence rate of a particular cause
in the presence of all causes of failure and given Z = z, the CSH is defined as λk(t|z) =
limh→0h

−1Pr(t < T ≤ t + h, ε = k|T ≥ t, z). The CIF is the cumulative probability of a
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particular cause event occurring by a certain time t and is defined as Fk(t) = Pr(T ≤ t, ε =
k). Since limt→∞Fk(t) = Pr(ε = k), the CIF is often called as a subdistribution function. For
an inference procedure, while the CSH regards other causes-related failures as a censoring,
the CIF depends on the estimation of other CSHs as follows, F̂k(t) =

∫ t

0
λ̂k(s)Ŝ(s)ds, where

Ŝ(t) = exp(−
∫ t

0

∑K
k=1 λ̂k(s)ds). Given Z = z, a subdistribution hazard (SH) has a following

relation with the CIF,

γk(t|z) = − d

dt
log{1− Fk(t|z)} =

λk(t|z)S(t|z)
1− Fk(t|z)

.

Gray (1988) proposed a weighted risk set In order to estimate the SH and the log rank
test. Fine and Gray (1999) considered a proportional hazard regression model under several
censoring schemes and under a randomly right censored data, they applied an inverse prob-
ability censoring weight (IPCW) technique assigning weights to the subjects experiencing
competing risks where the weight is determined by both competing event time and the cen-
soring time distribution. As an alternative method, Ruan and Gray (2008) considered the
imputation of potential censoring times for the subjects experiencing competing events.

A few studies have been done with an interval censored competing risk data. Jewell et al.
(2003) developed a nonparametric maximum likelihood estimator (NPMLE) and a pseudo
MLE of CIF and Jewell and Kalbfleisch (2004) suggested a modified pool adjacent violator
algorithm (PAVA) for type I interval censoring (Nam and Kang, 2014). For general interval
censored data, Hudgens et al. (2001) suggested the NPMLEs. Sun and Shen (2009) proposed
a two-stage estimation procedure for both a cause specific event incidence probability and a
hazard function. Hudgens et al. (2014) suggested a parametric approach by extending Jeong
and Fine’s method (2006).

Recently, Geskus (2011) showed three types of CIF estimators are equivalent under left
truncated and right censored data and derived a regression model. In this paper, we apply
his approach to interval censored data and construct a test statistic to compare CIFs. In
Section 2, we introduce notations and present two types of NPMLEs of CIF, the product
limit estimator and inverse probability weighted estimator. Section 3 proposes a test statis-
tic combining Sun’s test statistic (Zhou and Sun, 2004) and Gray’s one. Section 4 shows
simulation results and real data analysis. In Section 5, we conclude with some remarks.

2. Estimation of NPMLE

Observed data comprise {Oi = (Li, Ri, δi, εi, Zi), i = 1, · · · , n}, where δi = I(Ri < ∞) is
a censoring indicator, εi a cause indicator and Zi is a group indicator. Hudgens et al. (2001)
extended a Turnbull’s self consistent algorithm to competing risk setting. Let s1 < · · · <
sm < sm+1 =∞ be the ordered distinct time points derived from the interval censored data.
We assume that inspection times are independent of failure times and causes. Define dkj as
the number of failures related with cause k at sj and nj as at risk number at sj , respectively.
With αij = I(sj ∈ (Li, Ri]),

dkj =

n∑
i=1

dikj , dikj = δiI(εi = k)
αij f̂kj∑m+1

u=1 αiuf̂ku
, (2.1)
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nj =

n∑
i=1

δi m+1∑
r=j

dijr + (1− δi)I(Li > sj)

 ,
where f̂kj = [F̂k(sj)− F̂k(sj−)].

Geskus (2011) showed two alternative representations of Fk under left truncated and right
censored data. One is an inverse probability weighted estimator (IPW), F̂ IPW

k and the other

is a product limit estimator (PL), F̂PL
k .

In this section, our interest is to derive these two representations in a context of interval
censored data. First, we assume there exist a right censoring process working independently
with an inspection process. Let Ci ∼ G be a right censoring time and C∗i be defined as an
observable censoring time. In a context of interval censored data, set C∗i = Li for δi = 0 and
C∗i = Ri for δi = 1. Then using (C∗, 1− δ), the product limit estimator of Ḡ = 1−G has a
following form,

ˆ̄G(t) =
∏

j:cj≤t

(
1− mj

rc(cj)

)
, (2.2)

where c1 < · · · < cr are the ordered distinct observed censoring times, ml denotes the
number of censored subjects at cl and rc(c) =

∑n
i=1 I(C∗i > c). Then a weighted empirical

cumulative distribution function is calculated as follows

F̂ IPW
k (t) =

1

n

∑
j:sj<t

dkj
ˆ̄G(sj)

.

Next, for defining the product-limit estimator, if a risk set should be redefined as

n∗kj =

n∑
i=1

n∗ikj ,

n∗ikj = I(εi = k)

m+1∑
l=j

dikl + I(εi 6= k)

[
I(sj > c∗i )

ˆ̄G(sj)

ˆ̄G(c∗i )

+I(sj ≤ c∗i )

]
+ (1− δi)I(sj < Li), (2.3)

then F̂PL
k has the following form

F̂PL
k (t) =

∏
j:sj<t

(
1− dkj

n∗kj

)
, (2.4)

where
dkj

n∗
kj

= γ̂kj is interpreted as the estimated subdistribution hazard at sj . Since dkj

includes the calculation of F̂ IPW
k and F̂PL

k , it is also an extension of a self-consistency

algorithm where iterate the calculations of dkj in the E-step and that of F̂ IPW
k (F̂PL

k ) in the
M-step until a convergence criterion satisfies.
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3. Two sample Testing

We consider the comparison of the CIFs of two groups in this section. For brevity, we
assume there exist two causes. A Gray test (1988) is commonly applied because it reduces
to the ordinary log rank test in a case of no competing risk. For interval censored data, Sun
(1996) suggested a log rank test reducing to an ordinary log rank test for right censored
data. Our goal is to construct a test statistic which becomes either a Gray test statistic
under no interval censoring or a Sun test statistic with no competing risk.

Firstly, we review a Sun’s test statistic for interval censored data with no competing risk.
Denote Fl as a distribution function of a group l. Then H0 : F1 = F2 = F0 or H0 : S1 =
S2 = S0. Let w1 < · · · < wm < wm+1 =∞ be ordered distinct time points derived from the
interval censored data. With an indicator ηij = I(wj ∈ (Li, Ri]), define d̃jl as the overall
observed failure number and ñjl as at risk number for group l(= 1, 2) at wj and are also
expressed as

d̃jl =

n∑
i=1

d̃ijl, d̃ijl = I(zi = l)δi
ηij ĥj∑m+1

u=1 ηiuĥu
,

ñjl =

n∑
i=1

I(zi = l)

δi m+1∑
r=j

d̃ijr + (1− δi)I(Li > wj)

 ,
where ĥj = [Ŝ0(wj−) − Ŝ0(wj)] and Ŝ0 is the estimated survival function using a pooled
data under H0. Using these quantities, Sun (1996) derived the following log rank test,

U =

m∑
j=1

ñj1ñj2
ñj1 + ñj2

(
d̃j1
ñj1
− d̃j2
ñj2

)
, (3.1)

where ñj = ñj1 + ñj2 and d̃j = d̃j1 + d̃j2. With interval censored competing risk data, the
null hypothesis to be tested is H0 : F11(t) = F12(t) = F10(t), for all t, where F1l is a CIF of
cause 1 in a group l(= 1, 2) and F10 denotes a common CIF. We assume that each group has
a distinct censoring distribution Gl(l = 1, 2) and a corresponding estimator is obtained from
(2) with (C∗il, 1− δiI(Zi = l)) where C∗il = Li× I(Zi = l) for δi = 0 and C∗il = Ri× I(Zi = l)
for δi = 1. In a context of right censored competing risk data, Gray (1988) expressed a test
statistic as a sum of the differences of subdistribution hazards. Extending his idea to interval
censored data, a test statistic using the subdistribution derived at (4) is defined as follows,

Ũ∗ =

m∑
j=1

ñ∗j1ñ
∗
j2

ñ∗j1 + ñ∗j2

(
d̃∗j1
ñ∗j1
−
d̃∗j2
ñ∗j2

)
, (3.2)

where d̃∗jl is modified as

d̃∗jl =

n∑
i=1

d̃∗ijl, d̃∗ijl = I(Zi = l)δiI(εi = 1)
αij f̂

∗
j∑r+1

u=1 α̃iuf̂∗j
,
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where f̂∗j = [F̂10(wj) − F̂10(wj−)] and F̂10 is the common CIF of cause 1 estimated with a

pooled data of group 1 and group 2 under H0. Once calculating d̃∗ijl, ñ
∗
jl is redefined as

ñ∗jl =

n∑
i=1

{
I(εi = 1)

r+1∑
q=j

d̃∗iql + I(εi 6= 1)

[
I(sj > C∗il)

ˆ̄Gl(sj)

ˆ̄Gl(C∗il)
+ I(sj ≤ C∗il)

]

+(1− δi)I(sj < C∗il)

}
.

If there is no competing risk (K = 1), ñ∗jl and d̃∗jlk become ñjl and d̃jl, respectively and (3.2)

reduces to (3.1). For testing the hypothesis H0, the variance matrix Ṽ ∗ of Ũ∗ is estimated
using a multiple imputation. The detail procedure is as follows,

Step 1: For q = 1, · · · ,M , repeat

(a) For δi = 0, let T
(q)
i = Li

(b) For δi = 1, generate T
(q)
i satisfying the condition Li < T

(q)
i ≤ Ri where according

to a cause indicator εi, T
(q)
i is a random sample drawn using

u =
F̂10(T

(q)
i )−F̂10(Li)

F̂10(Ri)−F̂10(Li)
, u ∼ U(0, 1) for εi = 1,

v =
F̂20(T

(q)
i )−F̂20(Li)

F̂20(Ri)−F̂20(Li)
, v ∼ U(0, 1) for εi = 2,

respectively.

Step 2: With a data obtained from Step 1 {T (q)
i , ε

(q)
i , δ

(q)
i , Z

(q)
i }, a Gray test is applied for the

test statistic U
(q)
1 and the variance matrix V

(q)
1 .

Step 3: Iterate M ’ times Step 1 and Step 2. Define

Ṽ ∗ =
1

M

M∑
q=1

V
(q)
1 + (1 +

1

M
)

M∑
q=1

(U
(q)
1 − Ū)2, Ū =

M∑
q=1

U
(q)
1 .

Then the hypothesis H0 can be tested by using χ2 = Ũ∗2/Ṽ ∗ ∼ χ2(df = 1) or Z∗ =

Ũ∗/
√
Ṽ ∗ ∼ N(0, 1).

4. Simulation

Simulation studies were performed in order to assess the unbiasedness of the proposed
estimators and to evaluate the size and the power of the test statistics. To generate failure
times, the cause specific hazard rates are fixed as (λ1, λ2) following Beyersmann et al. (2009),

(i) Simulate a failure time T using all-cause hazards with λ1 + λ2.

(ii) For determining the cause of T generated in (i), run a binomial experiment with a
probability λ1/(λ1 + λ2) on cause 1.



952 Yang-Jin Kim · Do-young Kwon

(iii) For generating a right censoring times, a uniform distribution is applied.

(iv) For T < C, determine the number of inspection times from a discrete uniform distri-
bution, b ∼ U(10, 15). Then generate R’s discrete inspection times from wl ∼ U(0, 5)
and sort w1 < · · · < wb. Set (L,R) satisfying wl−1 = L < T < R = wl. For T > C, set
L = C and R =∞.

500’s random samples were generated at n = 50, 100 and 200. The means (standard
deviations) of two estimators are shown in Table 1. Two estimators give almost identical
values and are unbiased for every t. As the sample size increases, the MSEs are getting
smaller. Figure 1 shows the two estimates of FPL

1 and F IPW
1 under n = 50, 100 and 200.

For testing H0 : F11 = F12 = F10, 1000 simulated datasets are generated under two
different censoring rates, 10% and 30%. There are five scenarios according to H0 and H1’s
where the cause specific hazard rates of group 1 are fixed as (λ11, λ21) = (0.3, 0.2) and
those of group 2 are varying according to alternative hypotheses. Interval censored time and
censoring time were generated in a similar manner to the one-sample case. Figure 2 shows
the CIFs of F11 and F12 (the cause 1 CIFs of group 1 and group 2) under four alternative
hypotheses. Table 2 shows the estimated sizes at the nominal level of 0.05 and powers. The
estimated sizes show somewhat smaller type 1 error at n = 50 but maintain as the sample
size increases. When (λ12, λ22) = (0.8, 0.2), the power has the largest value which coincide
with the difference between F11 and F12 at Figure 2. Meanwhile, (λ12, λ22) = (0.3, 0.1) has
the smallest power among four alternative hypotheses. As censoring rate increases, the power
becomes smaller.

In order to illustrate the suggested method, we analyzed a HIV vaccine study (Hudgens et
al., 2011). This project was established to assess the feasibility of the vaccine to HIV in the
injecting drug users (IDU) in Bangkok, Thailand. 1209 HIV seronegative IDU were enrolled
and they were supposed to visit about every four months for counseling and assessment of
HIV seroconversion. 1124 people had at least one visit and 133 ones had been diagnosed
with HIV seroconversion among them. In this study, two subtypes strains such as subtype
B strain and subtype E strain can be occurred and the occurrence of one subtype censors
one of the other subtype. In detail, of the 133 converts, 27 and 99 subjects have subtype B
and subtype E, respectively, and the remaining seven patients’ subtypes were unknown. By
treating two subtypes as competing risks, the suggested method is applied. We investigated
two genders’ CIFs for subtype E and applied a suggested test statistic. Ũ∗ = 5.58 with
Ṽ ∗ = 6.19 gives p−value = 0.025 which means two groups have significantly different CIFs.

5. Concluding remarks

In this paper, we proposed the IPW estimator and the PL estimator of CIF for interval
censored competing risk data by extending Geskus’s estimators. Simulation results show
the estimates are unbiased over all time period and are almost equivalent. The convergence
rate was so fast and it took less than 10 second for F IPW and 20 one for FPL at n = 200,
respectively. We also suggested a test statistic for comparing two CIFs and several simula-
tion schemes were considered to evaluate the performance of a test statistic. According to
simulation result, test sizes maintain nominal levels and powers are getting smaller as cen-
soring rate increases. The suggested method assumes there exists a right censoring variable
generating independently with an inspection process composing interval censoring data.
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Table 4.1 NPMLEs and standard deviations of F1 and F2

n = 50 n = 100 n = 200

F1 F̂ IPW
1 F̂PL

1 F̂ IPW
1 F̂PL

1 F̂ IPW
1 F̂PL

1
0.04 0.036(0.029) 0.034(0.029) 0.043(0.025) 0.040(0.024) 0.040(0.017) 0.039(0.018)
0.08 0.079(0.040) 0.083(0.040) 0.080(0.031) 0.080(0.032) 0.080(0.022) 0.080(0.023)
0.10 0.097(0.041) 0.096(0.041) 0.102(0.035) 0.101(0.034) 0.098(0.023) 0.098(0.023)
0.12 0.116(0.044) 0.115(0.044) 0.122(0.036) 0.122(0.037) 0.118(0.024) 0.119(0.024)
0.16 0.152(0.053) 0.151(0.053) 0.159(0.038) 0.159(0.038) 0.157(0.025) 0.157(0.025)

F2 F̂ IPW
2 F̂PL

2 F̂ IPW
2 F̂PL

2 F̂ IPW
2 F̂PL

2
0.16 0.171(0.072) 0.157(0.070) 0.161(0.053) 0.154(0.053) 0.163(0.036) 0.157(0.037)
0.32 0.332(0.072) 0.319(0.077) 0.322(0.054) 0.316(0.053) 0.320(0.042) 0.316(0.043)
0.40 0.410(0.079) 0.399(0.077) 0.399(0.054) 0.394(0.053) 0.400(0.042) 0.397(0.042)
0.48 0.492(0.076) 0.495(0.079) 0.477(0.055) 0.475(0.057) 0.481(0.040) 0.478(0.041)
0.64 0.641(0.078) 0.638(0.081) 0.633(0.052) 0.635(0.053) 0.634(0.038) 0.636(0.038)
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Figure 4.1 F IPW and FPL at n = 50, 100 and 200
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Table 4.2 Empirical sizes and powers at λ11 = 0.3, λ21 = 0.2

censoring=10 censoring=30
(λ12, λ22) n = 50 n = 100 n = 200 n = 50 n = 100 n = 200
(0.3,0.2) 0.047 0.047 0.050 0.047 0.046 0.051
(0.5,0.2) 0.2670 0.520 0.822 0.253 0.458 0.800
(0.8,0.2) 0.760 0.960 1.000 0.746 0.968 1.000
(0.3,0.1) 0.140 0.251 0.461 0.080 0.110 0.180
(0.3,0.5) 0.330 0.682 0.910 0.181 0.350 0.590
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Figure 4.2 F11 and F12 when (λ11, λ21) = (0.3, 0.2)

In this paper, however, a regression model for estimating the effects of covariates has not
been considered. Very similar concepts can be extended to a regression models. Another
direction for future research would be a missing cause problem. The HIV dataset includes
seven subjects with unidentified subtypes. Even though the number of the subjects with
missing cause is small in this dataset, this problem has commonly occurred in competing risk
models thus suitable methods should be developed for interval censored data (Goetghebeur
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and Ryan, 1995; Lu and Tsiatis, 2001; Moreno-Betancur and Latouche, 2013). Do and Kim
(2017) applied a pseudo value approach to interval censored data with missing cause.
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