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Abstract. In this paper we consider empirical Bayes estimation of the hazard
rate and survival probabilities with right censored data under the assumption
that the hazard function is constant over the period of observation and the
prior distribution is gamma. We provide an estimator of the first derivative of
the prior moment generating function that converges at each point to the true

value in Ly and use it to obtain, easy to compute, asymptotlcally optimal
estimators under the squared error loss function.
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1. INTRODUCTION

Since the introduction of the empirical Bayes approach by Robbins (1955) statisticians
have employed the method in many areas of statistics (see for example Morris (1983) for a
remarkable list of such areas) to utilize similar information in constructing estimators.

In an empirical Bayes decision problem there are m independent random pairs
61,X;),.-,(0,,,X,,) such that Xj,...,X,, are observable and the distribution of
X; depends on the parameter ;. The parameters 6y,...,8,, are assumed to be i.i.d. with

an unknown common a priori distribution G . There is a non-negative loss function L
and the task is to find decision rules ¢,,(.) =¢,,(X{,...,X,,,.) that are asymptotically
optimal in the sense that with ' denoting the overall expectation

E[L(tyy (X 1)0, )] = min, E[L(t(X ,),0,p)]—0 as m—>co.

Robbins (1955) introduced the empirical Bayes method in a nonparametric framework in
the sense that in his approach G is completely unspecified. In the parametric empirical
Bayes approach, that was later explored by Efron and Morris (1973, 1975), the prior
distribution G belongs to a parametric family of distributions.
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In this paper we consider parametric empirical Bayes estimation of the hazard rate and
survival probabilities, with data obtained by observing each cohort for one unit of time,
under the assumption that each hazard rate is constant over the period of observation.

In Section 2 we formalize our model and verify some preliminary results. In Section 3 we
present our estimators and prove their asymptotic optimality under the squared error loss
function.

2. ASSUMPTION, NOTATION AND PRELIMINARIES

The main characteristics of our model are formalized in the following assumption.

Assumption 1. For each i € {l,...,m}, (X}1,..., X}, ,0;)are independent random vectors

such that
(i) conditional on 6;, X;1,...X;;, are i.i.d. with survival function

I — -6;(x)
F(x)=1,, +e Lioesars
(it) 6;'s are identically distributed with gamma density

-1 -1 -p.0
g(0) = (T(@) ™ p6% e P15
where o € (0,Ny]and 8 € (0, N, ] for some pair of integers N and N5 .

(1ii) sup;>y h; <.

We sometimes use 1[ ]to denote an indicator function and sometimes use it to denote the

value of an indicator function at a given point, with the distinction being clear from the
context. For each u € [—1,0], we use M (#) to denote the moment generating function of

the prior distribution evaluated at u . We use J;;(u) todenotel;y »_,1 , and use

n; _ m _
0;(u) to denote nfl 251']'(”) . The symbol & (u) denotesn}IZn,ﬁi(u) where

Note that E(6;(u)|6;)= ¢“% and hence E(6;;(u)) =Mu) = (BIB-u)® . We

also have

E(S. () =n7' > nMu)=M@u)=(B/S-u)®.

i=1
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Observe that since each g, (u) £1, we have Vargi uw)<E gi2 < 1. Therefore

m
E(G (u)- M(u))2 =Var(d (u)= n}z Z n,-zVar(5,~ (w) < m1 SUp;>1 1; ()

i=1
Let & be the Lebesgue measure on (0,1] and let v be the probability measure degenerate
at 1. When X is a random variable with survival function F(x) = Lcop + e ™1

density (Radon-Nikodym derivative) of the distribution of X with respectto y=8+vis
given by

[o<x<t]? @

-0.x - 1)(<I -v.x
Sfo(x)=6e o 1[0<x<1] t+e 91[x=1] =gve™? 1[0<x$l]' (2)
Suppose & has a gamma distribution with parameters @ and f, and conditional on &,
the random variables X,..., X, are ii.d. with density given in (2). Then a posterior

density of € given X| = xy,...,X,, = x,, is given by

(@+2 1)1 =(B+2x,)0

g(0 | xl,...xn) = C(xl,...xn )9 e 1[0>0] (3)

which is a gamma density. Hence the Bayes estimator of &€ under the squared error loss is
-1

E[0| X1, Xy 1= (B+ D X)) (@+ X 11y <1)) C)

and for each ¢ € (0,1)the Bayes estimator, under the squared error loss, of the survival
probability e s given by

©)

ﬂ'*' ZXI a+zl[x,-<|]
B+t+Y X; '

Ele™ %" | X1, X ] =(

3. ASYMPTOTICALLY OPTIMAL EMPIRICAL BAYES ESTIMATOR

In the remaining of the paper we use BA,E to denote Bayes estimator of 8,,, and use

ﬁ,ﬁ (t) to denote Bayes estimator of e Un' | The corresponding empirical Bayes

estimators are denoted by HA,EB and ﬁgB @®.

In the following theorem we give sufficient conditions for asymptotic optimality of

empirical Bayes estimators of ¢,, and ¢ %" based on estimators of the prior parameters

aand f and then provide estimators that satisfy the given sufficient conditions.
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Note that all of the following results are under Assumption 1. Therefore we will not
mention this assumption in the statement of every theorem or lemma. All incompletely

described limits in this paper are as m —> o0 through positive integers. The symbol [}
denotes end of proof.

Theorem 1. Let 0<@ < Ny and 0< ,8 < N, be estimators of a and [ such that

a—L5a and ,3—P——>,8, Let

n n
5EB _ (h . NV s, N
Om =B+ D Xpy) (a+zl[xmj<1]) (6)
Jj=1 J=1
and for t € (0,1) let
-1 d+il[/\'mj<1]
EB A < 5. T
Pm ([): ﬂ+t+Zij ﬁ+szj . (7)
j=1 j=1

Then é,EB and f;;”;;B (t) are asymptotically optimal estimators of 6, and
Pm(®)= e Ont respectively.

n, n,
Proof. Let A= Zl[X,,,, <1] and B = Zij . Let|| || denote the L, -norm defined by
Y |I=(E[Y 2])1/ 2 Observe that both 4 and B are non-negative and less than or equal
to sup;>1 n; with probability 1 since for each j, P[0 <X,,; <1]=1. Therefore

16E8 68 1< B (B +B) | G—al+Ha+A)| B-B]—0 (8)

by the triangle inequality and the Bounded Convergence Theorem since | & —a |< Nyand

|B-PBI<N;.
Since E(62) < 0, by Lemma 2.1 of Singh (1979)

EGEP 6,1 - E10F ~0,,1* =11658 -6 1.

Therefore asymptotic optimality of é,EB follows from (8).

To prove asymptotic optimality of f),ﬁB (2) observe that
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[(B+B) (B+B)-11< B7 (B~ A1 — 0 ©)
by the assumed property of ,ﬁ . Therefore by continuity of log

log((B + B) /(B + B))—2—0. (10)

Similarly
log((B+ B+1)/(B +B+1)—2—0. (11)

We have

log(Pn” () (P (1)) = (& - &) + (a + A)][log((B + B) /(B + B))

~log((B+ B +1)/(B + B +1))] (12)

+(@-a)log((B+B)/(f+B+1t)).

Since (£ + B)/(f + B +1t)is increasing in B and its log is negative,

|log((B+ B)/ B+ B+1)|<|log(BAB+1)] . (13)
Therefore by (10) and (11) and (13) the lhs of (12) -———P—>O. Thus by continuity of
f(x) =e" we have p?,l,iB @)/ pm (t)———P—>1 . It follows that

| PEE (1) - pE ()19 GEE (11 pE 1)) -1]—E0.

Since ﬁ,ﬁB (¢) and ﬁﬁ (t) are both positive and less than 1, by the Bounded Convergence
Theorem it follows that

EPEE (1) - pE (0> —0.

Since p,, (t) is bounded by Lemma 2.1 of Singh (1979)
E[PEB ()= pm 1 ~E[PE 1) - pr 01 = EPEE () - pE (1)) —0. O

The following theorem provides an estimator of the derivative of the prior moment
generating function that converges at each point to the true value in L, .
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Theorem 2. Let t € (—1,0] and let t,, <t be such that with h,, =t—t,,, h, —>0

and hy(m''?)——>w as m——>w. Let M'(t) = h,;\[5 (1) 8 (¢,,)]. Then with
M (t) denoting the moment generating function of 6 evaluated at t,

E[M'(t)-M'()]* —0 . (14)
Proof. Let | || denote the L, -norm. Then by the triangle inequality

|3 (0) = M @) |1 By (8. (2,) = ME D L+ By M @) =S () |
+ B M) -M(t,)]-M' @)
By (1) the first and the second term on the rhs of (15) are both less than or equal to

(15)

(hmml/z)_l(supizl n,-)l/zand the third term converges to zero, as m ——> 0, by the

definition of the derivative. O

The following lemma is used in the proof of Theorem 3.

Lemma 1. Suppose (a,, ),{b,,), and (B, are sequences such that

(i) a,, >0foreach m,and a,, —>a >0,

() b, ——>((B+1)"1 )P4 for some B >0,

(iii) 108((By+1)Bm) " = @, 10ghy,.

Then fB,,——>f.

Proof. Since log((B,, +1) ™! B,,)7 =a; ! logh,, ——>log((B+1)"! )P we have

Wm((B,, +1) 7 B)Pr = (B+D7' B)E. (16)

Let B+ =1limf,, and let f* = ﬂaﬂm andlet f(x)=((x+ l)—lx)x . Then by (16)
f(Bx) = f(B).

Observe that
dlog f(x)/dx =logx —log(x +1)+ (x + 1)~
and
d2log f(x)/dx? =x1=(x+D) 7 -+ )2 =x"1x+1)2.
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Since the second derivative of log(f(x) is positive on (0,) the first derivative of
log( f(x)is strictly increasing on(0,) . Since lim,_,, dlog f(x)/dx =0, we have
the first derivative of log(f(x) is negative on (0,0) . Hence log(f(x) is strictly
decreasing and therefore is one-one. This means f(x) is one-one on(0,) and therefore

ﬁ*=ﬁ*.ﬂ

Let f(x)=((x+1)"'x)*.

Observe that lim,_,qlog f(x) =0 and lim, _,, log f(x) = —1. Since as shown in the
proof of Lemma 1, log f(x) is strictly decreasing on (0,) the equation log f(x) =b
has a solution in (0,0) ifand only if -1<b<0.

Theorem 3. Let M '"(0) be as in Theorem 2. Let ,5 be the solution of the equation
log((x+ 1) x)* = (M1'(0)) ™ log (1) (17)
if —1< ]\Al'(O))_1 logé_'”(—l) <0, and let ,E = N, otherwise. Let & = ﬁM'(O) and let

& = min(@, Ny ) and f = min(B, N,). Then B—L2—s fand G—L—>a.

Proof. By Theorem 1 M'(0)———>M'(0) =/
and by (1)

5 ()—LoMEy =B+ gPMO

Use the fact (see for example Billingsley (1986)) that a sequence x,, converges in
probability to x if and only if every subsequence of x,, has a further subsequence that
converges to x with probability 1. Let {m, ) be a subsequence of {m). Then there is a

further subsequence (my; ) along which the right hand side of (17) converges to

log((S + l)_1 ﬂ)'B with probability 1 and hence eventually becomes negative and more

than -1. Therefore with probability 1 the estimator ,é eventually becomes the solution of

(17) along(my, )and hence converges to by Lemma 1. This means that E BN B

and hence @ —P—>a . It follows that ,é _r, f and d——P—>a because
|@-al<|a@-alad|B-FI<[| f-p].O '
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4. CONCLUDING REMARKS

If instead of assuming a gamma prior we assume the range of &;'s is compact then our

model will satisfy the assumptions of Datta (1991) which provides nonparametric
admissible asymptotically optimal empirical Bayes estimators based on a hyperprior with
full support. However the computation of Datta's estimators is not trivial.

The advantage of the estimators offered in this paper is that they are very easy to compute
and therefore can be used very easily in practice. While it may be argued that this
simplicity has been achieved at the expense of sacrificing some robustness by choosing a
parametric model it is also worth mentioning that parametric empirical Bayes is
considered by some statisticians (see for example Morris (1983)) as being closer to
Bayesian and therefore more attractive. For more comments regarding the comparison of
parametric and nonparametric empirical Bayes see the discussion of Morris (1983) by
James Berger.
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