• Title/Summary/Keyword: Rietveld Method

Search Result 92, Processing Time 0.027 seconds

Fe-doped beta-tricalcium phosphate; crystal structure and biodegradable behavior with various heating temperature (Fe 이온 치환 beta-tricalcium phosphate의 하소 온도에 따른 미세구조 및 분해 특성)

  • Yoo, Kyung-Hyeon;Kim, Hyeonjin;Sun, Woo Gyeong;Yoon, Seog-Young
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.6
    • /
    • pp.244-250
    • /
    • 2020
  • β-Tricalcium phosphate (β-TCP, Ca3(PO4)2) is a kind of biodegradable calcium phosphate ceramics with chemical and mineral compositions similar to those of bone. It is a potential candidate for bone repair surgery. To improve the bioactivity and osteoinductivity of β-TCP, various ions doped calcium phosphate have been studied. Among them, Iron is a trace element and its deficiency in the human body causes various problems. In this study, we investigated the effect of Fe ions on the structural variation, degradation behavior of β-TCP. Fe-doped β-TCP powders were synthesized by the coprecipitation method, and the heat treatment temperature was set at 925 and 1100℃. The structural analysis was carried out by Rietveld refinement using the X-ray diffraction results. Fe ions existed in a different state (Fe2+ or Fe3+) with different heat treatment temperatures, and the substitution sites (Ca-(4) and Ca-(5)) also changed with temperature. The degradation rate was fastest at Fe-doped β-TCP with heated at 1100℃. The cell viability behavior was also enhanced with the substitution of Fe ions. Therefore, the substitution of Fe ion has accelerated the degradation of β-TCP and improved the biocompatibility. It could be more utilized in biomedical devices.

Synthesis of Tetragonal Barium Titanate Powder by Solvothermal Technique (용매열법에 의한 정방정 티탄산 바륨 분말의 합성)

  • Kwon, Soon-Gyu;Choi, Kyoon;Pee, Jae-Hwan;Choi, Eui-Seok
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.2 s.273
    • /
    • pp.123-126
    • /
    • 2005
  • Barium Titanate (BT) powders were synthesized by solvothermal method with an ethanol as a solvent. The average particle size was increased with the feedstock concentration: the size was 59 nm at $6.25{\times}10^{-2}$ M and 89 nm at 0.5 M. The sample obtained at 0.5 M concentration was analysed by Rietveld refinement and the mole fraction of tetragonal phase was $75.5\%$ and lattice parameter of tetragonal phase was a=0.3999 (nm), c=0.4032 (nm), and cubic phase was a=0.4015 (nm). TEM analysis for the samples with condition of annealing at $500^{\circ}C$ for I h showed that hydroxyl ions on oxygen sites were not found for these experimental conditions.

Mineral Composition of the Sediment of Ulleung Basin, Korea (울릉분지 퇴적물의 광물조성)

  • Son, Byeong-Kook;Kim, Hag-Ju;Ahn, Gi-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.115-127
    • /
    • 2009
  • Mineral quantification was performed on sediments of the Ulleung basin by X-ray powder diffraction and the computer software based on Rietveld quantification method. The sediments are dominated by amorphous opal-A with quartz, feldspars, micas, clays, calcite, and pyrite. The opal-A shows iterative variation in abundance with increasing burial depth. In addition, the relative abundance of opal-A is coincident with abundance of organic carbon contents, indicating that the Ulleung sediment consists mostly of amorphous silica derived from organism in the pelagic environment. Upward increase in the abundance of opal-A is markedly shown in the cores located in the slope region. On the other hand, there is a distinct tendency that the abundance of calcite is inversely proportional to that of opal-A. This indicates that the abundance of opal-A increases during the rise of sea level. Also, the fall of sea level lowers the abundance of opal-A.

Electrochemical Properties and Crystal Structure of $Li_{1+x}Mn_2O_4$($0\leqx\leq0.075$) Synthesized at Solid State Method (고상법에 의한 $Li_{1+x}Mn_2O_4$ ($0\leqx\leq0.075$) 의 결정구조와 전기화학적 특성)

  • 박종광;고건문;임성훈;황종선;한병성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.5
    • /
    • pp.383-390
    • /
    • 2001
  • We have investigated the L $i_{1+x}$M $n_2$ $O_4$system as a cathode material for lithium rechargeable batteries. To improve the cycle performance of spinel LiM $n_2$ $O_4$ as the cathode of 4V class lithium secondary batteries, spinel phase L $i_{1+x}$M $n_2$ $O_4$(x=0, 0.025, 0.05, 0.075) was prepared at 75$0^{\circ}C$ for 48h. The preparation of L $i_{1+x}$M $n_2$ $O_4$ from L $i_2$ $O_3$ and Mn $O_2$ under air is studied. The compounds were synthesized by using solid-state reaction. Structural refinements were carried out with a Rietveld-refinement program. Electrochemical properties were examined using the Li/L $i_{1+x}$M $n_2$ $O_4$ cells. The capacity of L $i_{1+x}$M $n_2$ $O_4$ decreases with increases lithium content, while the cycle life improves. The initial discharge capacity are 118mAh/g and 116mAh/g for LiM $n_2$ $O_4$ decreases with increases lithium content, while the cycle life improves. The initial discharge capacity are 118mAh/g and 116mAh/g for LiM $n_2$ $O_4$ and L $i_{1.025}$M $n_2$ $O_4$, respectively.pectively.

  • PDF

Crystallography and Layered Structure of Synthetic Perovskite-type ($K_2La_2Ti_nO_{2n+4}$) Minerals (합성 페롭스카이트형($K_2La_2Ti_nO_{2n+4}$)광물의 결정학 및 층상구조에 관한 연구)

  • 문용희;최진범;이병임
    • Journal of the Mineralogical Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.73-84
    • /
    • 2001
  • 티타늄과 산소의 함량이 서로 다른 4가지의 합성 페롭스카이트형(perovskite-type) 광물(($K_2$$La_2$$Ti_{n}$/$O_{2n+4}$, n=3, 4, 5, 6; 14/mcm, 14/mmm, I42 m)을 대상으로 리트벨트(Rietveld)구조분석법을 실시하여 결정구조를 밝히고 티타늄함량에 따른 층상형 구조를 연구하였다. 4가지 합성시료에 대하여 구조분석을 실시한결과 대표적인 페롭스카이트형 광물인 토소나이트(taustonite, $La_{1-x}$ //$K_{x}$ /$TiO_3$, x<0.4)가 주성분으로 나타났으며 토스나이트내에 12개의 산소를 배위하는 A자리 양이온은 자리점유율에 의해 $La^{3+}$$K^{+}$ /의 치환관계를 보여준다 공간군은 14/mcm, 단위포는 a=5.505(1)~5.510(1)$\AA$, c=7.793(1)~7.796(1)$\AA$ V=236.25~236.66 $\AA^3$ 범위의 값을 갖는다. 구조의 정밀도를 나타내는 R지수를 살펴보면 $R_{B}$ 값은 5.31~9.10 S(GofF)값은 0.86~1.24로 각각 계산되었다. 12배위를 하는 A자리 양이온인 란탄과 산소의 평균거리는 2.755$\AA$이고 6배위를 하는 B자리 양이온인 티타늄과 산소의 평균거리는 1.948 $\AA$의 결과를 얻었다. 합성된페롭스카이트형 광물의 층상구조가 알려져 있지 않아 시뮬레이션을 통해 구조모델을 결정하였으며 그결과 n=3인 R-38시료에서만 두 종류의 층상 페롭스카이트($La_2$$K_2$$Ti_3$$O_{10}$ ) 구조 (A-type: 14/mmm, a=3.8178 $\AA$, c=29.9189 $\AA$, V=436.04 $\AA^3$, B-type: 142 m, a =3.8376 $\AA$, c=28.023 $\AA$, V=412.6 $\AA^3$)가 존재함을 확인하였으나 다른 시료에서는 토소나이트, 금홍석 외에 새로운 합성광물로 제파이트의 존재를 확인하였다.

  • PDF

Structure Refinement and Equation of State Studies of the Exsoluted Ilmenite-Hematite (티탄철석-적철석 용출시료의 구조분석과 상태방정식 연구)

  • Hwang, Gil-Chan;Kim, Young-Ho
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.195-204
    • /
    • 2011
  • Exsolution intergrowth of ilmenite and hematite was studied by the Rietveld refinement method. According to the analysis on these two structural analog minerals, it was found that octahedron (M2) of Ti in ilmenite is in the least deformation, then that (M1) of Fe in ilmenite is deformed next, and octaheron deformation of Fe in hematite is between M1 and M2. High pressure compression experiment was performed up to 5.8 GPa, where two minerals' XRD peaks merged completely. Ilmenite shows normal compression behavior, whereas hematite shrinks in very small amount. This kind of abnormal behavior might be due to the differential response to the applied pressure corresponding to the different compressibilities of the minerals each other.

Crystal Structures and Electrochemical Properties of LiNi1-xMgxO2 (0≤x≤0.1) for Cathode Materials of Secondary Lithium Batteries (리튬 이차전지의 양극 활물질 LiNi1-xMgxO2 (0≤x≤0.1)의 결정구조 및 전기화학적 특성)

  • Kim, Deok-Hyeong;Jeong, Yeon Uk
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.3
    • /
    • pp.262-267
    • /
    • 2010
  • $LiNi_{1-x}Mg_xO_2$(x=0, 0.025, 0.05, 0.075, 0.1) samples were synthesized by the solid-state reaction method. The crystal structure was analyzed by X-ray powder diffraction and Rietveld refinement. $LiNi_{1-x}Mg_xO_2$samples give single phases of hexagonal layered structures with a space group of R-3m. The calculated cation-anion distances and angles from the Rietveld refinement were changed with Mg contents in $LiNi_{1-x}Mg_xO_2$. The thicknesses of $NiO_2$ slabs were increased and the distances between the $NiO_2$ slabs were decreased with the increase in Mg contents in the samples. The electrical conductivities of sintered $LiNi_{1-x}Mg_xO_2$ samples were around $10^{-2}$ S/cm at room temperature. The electrochemical performances of $LiNi_{1-x}Mg_xO_2$were evaluated by coin cell test. Compared to $LiNiO_2$, $LiNi_{0.95}Mg_{0.05}O_2$ exhibited improved high-rate capability and cyclability due to the well-ordered layered structure by doping of Mg ion.

Effects of Crystallization Behavior on Microwave Dielectric Properties of CaMgSi2O6 Glass-Ceramics

  • Choi, Bo Kyeong;Kim, Eung Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.1
    • /
    • pp.70-74
    • /
    • 2013
  • Dependence of microwave dielectric properties on the crystallization behaviors of $CaMgSi_2O_6$ (diopside) glass-ceramics was investigated with different heat treatment methods (one and/or two-step). The crystallization behaviors of the specimens, crystallite size and degree of crystallization, were evaluated by differential thermal analysis (DTA), scanning electron microscope (SEM) and X-ray diffraction (XRD) analysis by combined Rietveld and reference intensity ratio (RIR) methods. With an increase in heattreatment temperature, the dielectric constant (K) and the quality factor (Qf) increased due to the increase of the crystallite size and degree of crystallization. The specimens heat-treated by the two-step method had a higher degree of crystallization than the specimens heat-treated by the one-step method, which induced improvement in the quality factor (Qf) of the specimens.

Exploring the Properties and Potential of Single-crystal NCM 811 for Lithium-ion Batteries

  • Yongseok Lee;Seunghoon Nam
    • Corrosion Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.36-43
    • /
    • 2023
  • Single-crystal Ni-rich NCM is a material that has drawn attention in the field of lithium-ion batteries due to its high energy density and long cycle life. In this study, we investigated the properties of single-crystal NCM 811 and its potential for use in lithium-ion batteries. High-quality single crystals of NCM 811 were successfully synthesized by crystal growth via a flux method. The single-crystal nature of the samples was confirmed through detailed characterization techniques, such as scanning electron microscopy and x-ray diffraction with Rietveld refinement. The crystal structure and electrochemical performances of the single-crystal NCM 811 were analyzed and compared to its poly-crystal counterpart. The results indicated that single-crystal NCM 811 had electrochemical performance and thermal stability superior to poly-crystalline NCM 811, making it a suitable candidate for high-performance batteries. The findings of this study contribute to a better understanding of the characteristics and potential of single-crystal NCM 811 for lithium-ion batteries.

Mineral Compositions of Korean Dancheong Pigment Products using Quantitative XRD (정량 X-선 회절분석을 이용한 국내시판 단청안료의 광물조성 연구)

  • Moon, Dong Hyeok;Han, Min Su;Jeong, Hye Young;Go, In Hee;Cho, Hyen Goo
    • Journal of Conservation Science
    • /
    • v.32 no.3
    • /
    • pp.403-416
    • /
    • 2016
  • Mineral composition and content of 22 Korean Dancheong pigment products were obtained by Rietveld quantitative analysis. Jubosa, Hwang, Seokrok, Seokcheong and Hobun consist of pure cinnabar, orpiment, malachite, azurite and calcite (or aragonite), respectively. Whereas Seokganju, Hwangto, Noerok, Lapis lazuli, Baekto and Cockie hobun mainly consist of hematite, goethite, celadonite, lazurite, kaolin mineral and portlandite, respectively. And they all consist of soil minerals (quartz, feldspar, sericite and vermiculite) and filler minerals in the industry field (calcite, gypsum and anhydrite) at a different content. Quantitative XRD proved more useful method to determined exact mineral composition and content than chemical or microscopical data. If this method utilize for specification of natural pigment product, it is considered to be applicable in restoration technology and conservation science field.