DOI QR코드

DOI QR Code

Effects of Crystallization Behavior on Microwave Dielectric Properties of CaMgSi2O6 Glass-Ceramics

  • Choi, Bo Kyeong (Department of Materials Engineering, Kyonggi University) ;
  • Kim, Eung Soo (Department of Materials Engineering, Kyonggi University)
  • Received : 2012.10.19
  • Accepted : 2012.12.17
  • Published : 2013.01.31

Abstract

Dependence of microwave dielectric properties on the crystallization behaviors of $CaMgSi_2O_6$ (diopside) glass-ceramics was investigated with different heat treatment methods (one and/or two-step). The crystallization behaviors of the specimens, crystallite size and degree of crystallization, were evaluated by differential thermal analysis (DTA), scanning electron microscope (SEM) and X-ray diffraction (XRD) analysis by combined Rietveld and reference intensity ratio (RIR) methods. With an increase in heattreatment temperature, the dielectric constant (K) and the quality factor (Qf) increased due to the increase of the crystallite size and degree of crystallization. The specimens heat-treated by the two-step method had a higher degree of crystallization than the specimens heat-treated by the one-step method, which induced improvement in the quality factor (Qf) of the specimens.

Keywords

References

  1. Y. Imanaka, "Multilayered Low Temperature Cofired Ceramics (LTCC) Technology," Springer-Verlag, New York, 2005.
  2. J. H. Kim, S. J. Hwang, W. K. Sung, and H. S. Kim, "Thermal and Dielectric Properties of Glass-ceramics Sintered Based on Diopside and Anorthite Composition," J. Electroceram., 23 209-13 (2009). https://doi.org/10.1007/s10832-007-9395-9
  3. S. Rajesh, H. Jantunen, M. Letz, and S. Pichler-Willhelm, "Low Temperature Sintering and Dielectric Properties of Alumina-Filled Glass Composites for LTCC Applications," Int. J. Appl. Ceram. Technol., 1-8 (2011).
  4. R. D. Rawlings, J. P. Wu, and A. R. Boccaccini, "Glass-Ceramics: Their Production from Wastes-a Review," J. Mater. Sci., 41 733-61 (2006). https://doi.org/10.1007/s10853-006-6554-3
  5. K. Yasukawa, Y. Terashi, and A. Nakayama, "Crystallinity Analysis of Glass-ceramics by the Rietveld Method," J. Am. Ceram. Soc., 81 2978-82 (1998).
  6. L. Barbieri, F. Bondioli, I. Lancellotti, C. Leonelli, M. Montorsi, A. M. Ferrari, and P. Miselli, "The Anorthite-diopside System: Structural and Devitrification Study. Part II: Crystallinity Analysis by the Rietveld-RIR Method," J. Am. Ceram. Soc., 88 3131-36 (2005). https://doi.org/10.1111/j.1551-2916.2005.00578.x
  7. T. Roisnel and J. R. Carvajal, "WinPLOTR: A Windows Tool for Powder Diffraction Patterns Analysis," Mat. Sci. Forum., 378-81 118-23 (2001). https://doi.org/10.4028/www.scientific.net/MSF.378-381.118
  8. B. W. Hakki and P. D. Coleman, "A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range," IRE Trans. Microwave Theory Tech., 8 402-10 (1960). https://doi.org/10.1109/TMTT.1960.1124749
  9. V. K. Marghussian and M. H. Dayi Niaki, "Effects of Composition Changes on the Crystallization Behaviour and Properties of $SiO_{2}-Al_{2}O_{3}-CaO-MgO\;(Fe_{2}O_{3}-Na_{2}O-K_{2}O) $ Glassceramics," J. Eur. Ceram. Soc., 15 343-48 (1995). https://doi.org/10.1016/0955-2219(95)90358-P
  10. A. Karamanov, M. Pelino, "Induced Crystallization Porosity and Properties of Sintereds Diopside and Wollastonite Glass-ceramics," J. Eur. Ceram. Soc., 28 555-62 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.08.001
  11. R. Chen, Y. Wang, Y. Hu, Z. Hu, and C. Liu, "Modification on Luminescent Properties of $SrAl_{2}O_{4}$$Eui^{2+}$, $Dy^{3+}$ Phosphor by $Tb^{3+}$ Ions Doping," J. Lumin., 128 1180-84 (2008). https://doi.org/10.1016/j.jlumin.2007.11.094
  12. J. H. Kim, S. J. Hwang, W. K. Sung, and H. S. Kim, "Thermal and Dielectric Properties of Glass-ceramics Sintered Based on Diopside and Anorthite Composition," J. Electroceram., 23 209-13 (2009). https://doi.org/10.1007/s10832-007-9395-9
  13. C. L. Lo, J. G. Duh, and B. S. Chiou, "Low Temperature Sintering and Crystallisation Behaviour of Low Loss Anorthite-based Glass-ceramics," J. Mater. Sci., 38 693-98 (2003). https://doi.org/10.1023/A:1021836326089
  14. S. J. Penn, N. M. Alford, A. Templeton, X. Wang, M. Xu, M. Reece, and K. Schrapel, "Effect of Porosity and Grain Size on the Microwave Dielectric Properties of Sintered Alumina," J. Am. Ceram. Soc., 80 1885-88 (1997).
  15. J. R. Clark, D. E. Appleman, and J. J. Papike, "Crystal-Chemical Characterization of Clinopyroxenes Based on Eight New Structure Refinements," Mineral. Soc. Am. Spec. Pap., 2 231-50 (1969).
  16. N. Ishizawa, T. Miyata, I. Minato, F. Marumo, and S. Iwai, "A Structural Investigation of ${\alpha}-Al_{2}O_{3}$ at 2170 K," Acta Cryst., B36 228-230 (1980).
  17. C. C. Chiang, S. F. Wang, Y. R. Wang, and W. C. J. Wei, "Densification and Microwave Dielectric Properties of $CaOB_{2}O_{3}-SiO_{2}$ system glass-ceramics," Ceram. Int., 34 599-604 (2008). https://doi.org/10.1016/j.ceramint.2006.12.008

Cited by

  1. vol.53, pp.8S3, 2014, https://doi.org/10.7567/JJAP.53.08NB01
  2. Enhanced Crystallization Behaviour and Microwave Dielectric Properties of 0.9CaMgSi2O6-0.1MgSiO3 Glass-Ceramics Doped with TiO2 vol.53, pp.2, 2016, https://doi.org/10.4191/kcers.2016.53.2.139
  3. Physico-mechanical behaviour of alkali and alkaline earth metal-containing mica glass-ceramics: a comparative evaluation vol.57, pp.5, 2013, https://doi.org/10.1007/s43207-020-00054-9