DOI QR코드

DOI QR Code

Synthesis of Tetragonal Barium Titanate Powder by Solvothermal Technique

용매열법에 의한 정방정 티탄산 바륨 분말의 합성

  • Kwon, Soon-Gyu (Advanced Materials and Components Lab., Korea Institute of Ceramic Engineering and Technology) ;
  • Choi, Kyoon (Advanced Materials and Components Lab., Korea Institute of Ceramic Engineering and Technology) ;
  • Pee, Jae-Hwan (Icheon Institute, Korea Institute of Ceramic Engineering and Technology) ;
  • Choi, Eui-Seok (Icheon Institute, Korea Institute of Ceramic Engineering and Technology)
  • 권순규 (요업기술원 첨단소재부품팀) ;
  • 최균 (요업기술원 첨단소재부품팀) ;
  • 피재환 (요업기술원 이천분원사업단) ;
  • 최의석 (요업기술원 이천분원사업단)
  • Published : 2005.02.01

Abstract

Barium Titanate (BT) powders were synthesized by solvothermal method with an ethanol as a solvent. The average particle size was increased with the feedstock concentration: the size was 59 nm at $6.25{\times}10^{-2}$ M and 89 nm at 0.5 M. The sample obtained at 0.5 M concentration was analysed by Rietveld refinement and the mole fraction of tetragonal phase was $75.5\%$ and lattice parameter of tetragonal phase was a=0.3999 (nm), c=0.4032 (nm), and cubic phase was a=0.4015 (nm). TEM analysis for the samples with condition of annealing at $500^{\circ}C$ for I h showed that hydroxyl ions on oxygen sites were not found for these experimental conditions.

용매열법으로 출발물질의 농도를 변수로 차여 $BaTiO_3$ 분말을 합성하였다. 평균입자크기는 출발물질의 농도에 따라 비례하였는데 TiO_2를 기준으로 1/16M 농도에tj 59nm이었고 1/2M 농도에서는 89nm까지 증가하였다. 평균입자 크기가 89nm인 BT 분말에 대하여 리트벨트법에 의하여 분석한 결과 상분율은 정방정상 $75.5\%$이었고, 격자상수는 정방정상은 a=0.3999(nm), c=0.40319(nm)이고, 입방정상은 a=0.4015(nm)이었다. 이 분말을 $500^{\circ}C$ 1시간 열처리 후 TEM분석을 한 결과, 분말 내부에 수산 이온들이 거의 존재하지 않음을 확인하였다.

Keywords

References

  1. K. Uchino, E. Sadanaga, and T. Hirose, 'Dependence of the Crystal Structure on Particle Size in Barium Titanate,' J. Am. Ceram. Soc., 72 [8] 1555-58 (1989) https://doi.org/10.1111/j.1151-2916.1989.tb07706.x
  2. B. D. Begg, E. R. Vance, and J. Nowotnhy, 'Effect of Particle Size on the Room-Temperature Crystal Structure of Barium Titanate,' J. Am. Ceram. Soc., 77 [12] 3186-92 (1994) https://doi.org/10.1111/j.1151-2916.1994.tb04568.x
  3. N. B. Kofanova, Y. A. Kuprina, and M. F. Kupriyanov, 'Size Effects in Barium Titanate,' Bull. of the Russian Academy of Sci. Phys., 66 [6] 925-28 (2002)
  4. S. Wada, T. Suzuki, and T. Noma, 'Lattice Defects in the Size Effect of Barium Titanate Fine Paritcles,' J. Ceram. Soc. Jpn., 104 [5] 383-92 (1996) https://doi.org/10.2109/jcersj.104.383
  5. H. Xu and L. Gao, 'Tetragonal Nanocrystalline Barium Titanate Powder; Preparation, Characterization, and Dielectric Properties,' J. Am. Ceram. Soc., 86 [1] 203-05 (2003) https://doi.org/10.1111/j.1151-2916.2003.tb03307.x
  6. D. F. K. Hennings, C. Metzmacher, and B. S. Schreinemacher, 'Defect Chemistry and Microstructure of Hydrothermal Barium Titanate,' J. Am. Ceram. Soc., 84 [1] 179-82 (2001) https://doi.org/10.1111/j.1151-2916.2001.tb00627.x
  7. B. K. Kim and D. Y. Lim, 'A New Glycothermal Process for Barium Titanate Nanoparticle Synthesis,' J. Am. Ceram. Soc., 86 [10] 1793-96 (2003)
  8. D. Chea and X. Jiao, 'Solvethermal Synthesis and Characterization of Barium Titanate Powders,' J. Am. Ceram. Soc., 83 [10] 2637-39 (2000) https://doi.org/10.1111/j.1151-2916.2000.tb01606.x
  9. R. H. Buttner and E. M. Maslen, 'Structure Parameter and Electron Difference Density in $BaTiO_3$,' Acta Cryst., B48 764 (1992)
  10. J. Harada, T. Pedersen, and Z. Barnea, 'X-Ray and Neutron Diffraction Study of Tetragonal Barium Titanate,' Acta Cryst., A26 336 (1970)
  11. E. Izumi, 'The Rietveld Method,' Ch. 13, Edited by R. A. Young, Oxford University Press, Oxford, 1995
  12. S. W. Lu, B. I. Lee, Z. L. Wang, and W. D. Samuels, 'Hydrothermal Synthesis and Structural Characterization of $BaTiO_3$ Nanocrystals,' J. Cryst. Growth, 219 269-76 (2000) https://doi.org/10.1016/S0022-0248(00)00619-9