Browse > Article
http://dx.doi.org/10.3365/KJMM.2010.48.03.262

Crystal Structures and Electrochemical Properties of LiNi1-xMgxO2 (0≤x≤0.1) for Cathode Materials of Secondary Lithium Batteries  

Kim, Deok-Hyeong (School of Materials Science and Engineering, Kyungpook National University)
Jeong, Yeon Uk (School of Materials Science and Engineering, Kyungpook National University)
Publication Information
Korean Journal of Metals and Materials / v.48, no.3, 2010 , pp. 262-267 More about this Journal
Abstract
$LiNi_{1-x}Mg_xO_2$(x=0, 0.025, 0.05, 0.075, 0.1) samples were synthesized by the solid-state reaction method. The crystal structure was analyzed by X-ray powder diffraction and Rietveld refinement. $LiNi_{1-x}Mg_xO_2$samples give single phases of hexagonal layered structures with a space group of R-3m. The calculated cation-anion distances and angles from the Rietveld refinement were changed with Mg contents in $LiNi_{1-x}Mg_xO_2$. The thicknesses of $NiO_2$ slabs were increased and the distances between the $NiO_2$ slabs were decreased with the increase in Mg contents in the samples. The electrical conductivities of sintered $LiNi_{1-x}Mg_xO_2$ samples were around $10^{-2}$ S/cm at room temperature. The electrochemical performances of $LiNi_{1-x}Mg_xO_2$were evaluated by coin cell test. Compared to $LiNiO_2$, $LiNi_{0.95}Mg_{0.05}O_2$ exhibited improved high-rate capability and cyclability due to the well-ordered layered structure by doping of Mg ion.
Keywords
energy storage materials; chemical synthesis; electrochemistry; X-ray diffraction; lithium-ion batteries;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 K. Mitzushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough, Mater. Res. Bull. 15, 783 (1980)   DOI   ScienceOn
2 M. Yoshio, H. Tanaka, K. Tomonaga, and H. Noguchi, J. Power Sources 40, 347 (1992)   DOI   ScienceOn
3 H. Arai, S. Okada, H. Ohtsuka, M. Ichimura, and J. Yamaki, Solid State Ionics 80, 261 (1995)   DOI   ScienceOn
4 A. Rougier, P. Gravereau, and C. Delmas, J. Electrochem. Soc. 143, 1168 (1996)   DOI
5 L. Croguennec, C. Pouillerie, and C. Delmas, J. Electrochem. Soc. 147, 1314 (2000)   DOI   ScienceOn
6 T. Ohzuku, A. Ueda, M. Nagayama, Y. Iwakoshi, and H. Komori, Electrochim. Acta 38, 1159 (1993)   DOI   ScienceOn
7 C. Delmas and I. Saadoune, Solid State Ionics 53-56, 370 (1992)   DOI   ScienceOn
8 M. Guilmard, A. Rougier, M. Grune, L. Croguennec, and C. Delmas, J. Power Sources 115, 305 (2003)   DOI   ScienceOn
9 T. Ohzuku, A. Ueda, and M. Nagayama, J. Electrochem. Soc. 140, 1862 (1993)   DOI   ScienceOn
10 H. J. Kim, Y. U. Jeong, J. H. Lee, and J. J. Kim, J. Power Sources 159, 233 (2006)   DOI   ScienceOn
11 E. Zhecheva and R. Stoyanova, Solid State Ionics 66, 143 (1993)   DOI   ScienceOn
12 J. Morales, C. P$\rez-Vicente, and J. L. Tirado, Mat. Res. Bull. 25, 623 (1990)   DOI   ScienceOn
13 S. G. Woo, H. Ryu, H. R. Lee, J. S. Kim, and I. S. Kim, J. Kor. Inst. Met. & Mater. 37, 878 (1999)
14 N. Yabuuchi and T. Ohzuku, J. Power Sources 119-121, 171 (2003)   DOI   ScienceOn
15 C. C. Chang, J. Y. Kim, and P. N. Kumta, J. Electrochem. Soc. 147, 1722 (2000)   DOI   ScienceOn