Loading [MathJax]/jax/output/CommonHTML/jax.js
  • Title/Summary/Keyword: Riemann-Liouville integral

Search Result 41, Processing Time 0.019 seconds

CERTAIN FRACTIONAL INTEGRAL INEQUALITIES ASSOCIATED WITH PATHWAY FRACTIONAL INTEGRAL OPERATORS

  • Agarwal, Praveen;Choi, Junesang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.1
    • /
    • pp.181-193
    • /
    • 2016
  • During the past two decades or so, fractional integral inequalities have proved to be one of the most powerful and far-reaching tools for the development of many branches of pure and applied mathematics. Very recently, many authors have presented some generalized inequalities involving the fractional integral operators. Here, using the pathway fractional integral operator, we give some presumably new and potentially useful fractional integral inequalities whose special cases are shown to yield corresponding inequalities associated with Riemann-Liouville type fractional integral operators. Relevant connections of the results presented here with those earlier ones are also pointed out.

FRACTIONAL INEQUALITIES FOR SOME EXPONENTIALLY CONVEX FUNCTIONS

  • Mehreen, Naila;Anwar, Matloob
    • Honam Mathematical Journal
    • /
    • v.42 no.4
    • /
    • pp.653-665
    • /
    • 2020
  • In this paper, we establish new integral inequalities via Riemann-Liouville fractional integrals and Katugampola fractional integrals for the class of functions whose derivatives in absolute value are exponentially convex functions and exponentially s-convex functions in the second sense.

CERTAIN GRONWALL TYPE INEQUALITIES ASSOCIATED WITH RIEMANN-LIOUVILLE k- AND HADAMARD k-FRACTIONAL DERIVATIVES AND THEIR APPLICATIONS

  • Nisar, Kottakkaran Sooppy;Rahman, Gauhar;Choi, Junesang;Mubeen, Shahid;Arshad, Muhammad
    • East Asian mathematical journal
    • /
    • v.34 no.3
    • /
    • pp.249-263
    • /
    • 2018
  • We aim to establish certain Gronwall type inequalities associated with Riemann-Liouville k- and Hadamard k-fractional derivatives. The results presented here are sure to be new and potentially useful, in particular, in analyzing dependence solutions of certain k-fractional differential equations of arbitrary real order with initial conditions. Some interesting special cases of our main results are also considered.

FRACTIONAL CALCULUS AND INTEGRAL TRANSFORMS OF THE M-WRIGHT FUNCTION

  • KHAN, N.U.;KASHMIN, T.;KHAN, S.W.
    • Journal of applied mathematics & informatics
    • /
    • v.37 no.5_6
    • /
    • pp.341-349
    • /
    • 2019
  • This paper is concerned to investigate M-Wright function, which was earlier known as transcendental function of the Wright type. M-Wright function is a special case of the Wright function given by British mathematician (E.Maitland Wright) in 1933. We have explored the cosequences of Riemann-Liouville Integral and Differential operators on M-Wright function. We have also evaluated integral transforms of the M-Wright function.

FRACTIONAL CALCULUS OPERATORS OF THE PRODUCT OF GENERALIZED MODIFIED BESSEL FUNCTION OF THE SECOND TYPE

  • Agarwal, Ritu;Kumar, Naveen;Parmar, Rakesh Kumar;Purohit, Sunil Dutt
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.3
    • /
    • pp.557-573
    • /
    • 2021
  • In this present paper, we consider four integrals and differentials containing the Gauss' hypergeometric 2F1(x) function in the kernels, which extend the classical Riemann-Liouville (R-L) and Erdélyi-Kober (E-K) fractional integral and differential operators. Formulas (images) for compositions of such generalized fractional integrals and differential constructions with the n-times product of the generalized modified Bessel function of the second type are established. The results are obtained in terms of the generalized Lauricella function or Srivastava-Daoust hypergeometric function. Equivalent assertions for the Riemann-Liouville (R-L) and Erdélyi-Kober (E-K) fractional integral and differential are also deduced.

CERTAIN NEW PATHWAY TYPE FRACTIONAL INTEGRAL INEQUALITIES

  • Choi, Junesang;Agarwal, Praveen
    • Honam Mathematical Journal
    • /
    • v.36 no.2
    • /
    • pp.455-465
    • /
    • 2014
  • In recent years, diverse inequalities involving a variety of fractional integral operators have been developed by many authors. In this sequel, here, we aim at establishing certain new inequalities involving pathway type fractional integral operator by following the same lines, recently, used by Choi and Agarwal [7]. Relevant connections of the results presented here with those earlier ones are also pointed out.

Fredholm Type Integral Equations and Certain Polynomials

  • Chaurasia, V.B.L.;Shekhawat, Ashok Singh
    • Kyungpook Mathematical Journal
    • /
    • v.45 no.4
    • /
    • pp.471-480
    • /
    • 2005
  • This paper deals with some useful methods of solving the one-dimensional integral equation of Fredholm type. Application of the reduction techniques with a view to inverting a class of integral equation with Lauricella function in the kernel, Riemann-Liouville fractional integral operators as well as Weyl operators have been made to reduce to this class to generalized Stieltjes transform and inversion of which yields solution of the integral equation. Use of Mellin transform technique has also been made to solve the Fredholm integral equation pertaining to certain polynomials and H-functions.

  • PDF

A NEW EXTENSION OF THE MITTAG-LEFFLER FUNCTION

  • Arshad, Muhammad;Choi, Junesang;Mubeen, Shahid;Nisar, Kottakkaran Sooppy;Rahman, Gauhar
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.549-560
    • /
    • 2018
  • Since Mittag-Leffler introduced the so-called Mittag-Leffler function in 1903, due to its usefulness and diverse applications, a variety and large number of its extensions (and generalizations) and variants have been presented and investigated. In this sequel, we aim to introduce a new extension of the Mittag-Leffler function by using a known extended beta function. Then we investigate ceratin useful properties and formulas associated with the extended Mittag-Leffler function such as integral representation, Mellin transform, recurrence relation, and derivative formulas. We also introduce an extended Riemann-Liouville fractional derivative to present a fractional derivative formula for a known extended Mittag-Leffler function, the result of which is expressed in terms of the new extended Mittag-Leffler functions.