• Title/Summary/Keyword: Riemann sum

Search Result 21, Processing Time 0.022 seconds

SOME RESULTS ON PARAMETRIC EULER SUMS

  • Xu, Ce
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1255-1280
    • /
    • 2017
  • In this paper we present a new family of identities for parametric Euler sums which generalize a result of David Borwein et al. [2]. We then apply it to obtain a family of identities relating quadratic and cubic sums to linear sums and zeta values. Furthermore, we also evaluate several other series involving harmonic numbers and alternating harmonic numbers, and give explicit formulas.

EVALUATIONS OF SOME QUADRATIC EULER SUMS

  • Si, Xin;Xu, Ce
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.2
    • /
    • pp.489-508
    • /
    • 2020
  • This paper develops an approach to the evaluation of quadratic Euler sums that involve harmonic numbers. The approach is based on simple integral computations of polylogarithms. By using the approach, we establish some relations between quadratic Euler sums and linear sums. Furthermore, we obtain some closed form representations of quadratic sums in terms of zeta values and linear sums. The given representations are new.

EVALUATION OF CERTAIN ALTERNATING SERIES

  • Choi, Junesang
    • Honam Mathematical Journal
    • /
    • v.36 no.2
    • /
    • pp.263-273
    • /
    • 2014
  • Ever since Euler solved the so-called Basler problem of ${\zeta}(2)=\sum_{n=1}^{\infty}1/n^2$, numerous evaluations of ${\zeta}(2n)$ ($n{\in}\mathbb{N}$) as well as ${\zeta}(2)$ have been presented. Very recently, Ritelli [61] used a double integral to evaluate ${\zeta}(2)$. Modifying mainly Ritelli's double integral, here, we aim at evaluating certain interesting alternating series.

EULER SUMS EVALUATABLE FROM INTEGRALS

  • Jung, Myung-Ho;Cho, Young-Joon;Choi, June-Sang
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.3
    • /
    • pp.545-555
    • /
    • 2004
  • Ever since the time of Euler, the so-called Euler sums have been evaluated in many different ways. We give here a proof of the classical Euler sum by following Lewin's method. We also consider some related formulas involving Euler sums, which are evaluatable from some known definite integrals.

EXPLICIT EVALUATION OF HARMONIC SUMS

  • Xu, Ce
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.13-36
    • /
    • 2018
  • In this paper, we obtain some formulae for harmonic sums, alternating harmonic sums and Stirling number sums by using the method of integral representations of series. As applications of these formulae, we give explicit formula of several quadratic and cubic Euler sums through zeta values and linear sums. Furthermore, some relationships between harmonic numbers and Stirling numbers of the first kind are established.

COUNTING SUBRINGS OF THE RING ℤm × ℤn

  • Toth, Laszlo
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.6
    • /
    • pp.1599-1611
    • /
    • 2019
  • Let $m,n{\in}{\mathbb{N}}$. We represent the additive subgroups of the ring ${\mathbb{Z}}_m{\times}{\mathbb{Z}}_n$, which are also (unital) subrings, and deduce explicit formulas for $N^{(s)}(m,n)$ and $N^{(us)}(m,n)$, denoting the number of subrings of the ring ${\mathbb{Z}}_m{\times}{\mathbb{Z}}_n$ and its unital subrings, respectively. We show that the functions $(m,n){\mapsto}N^{u,s}(m,n)$ and $(m,n){\mapsto}N^{(us)}(m,n)$ are multiplicative, viewed as functions of two variables, and their Dirichlet series can be expressed in terms of the Riemann zeta function. We also establish an asymptotic formula for the sum $\sum_{m,n{\leq}x}N^{(s)}(m,n)$, the error term of which is closely related to the Dirichlet divisor problem.

The Prime Counting Function (소수계량함수)

  • Lee, Sang-Un;Choi, Myeong-Bok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.10
    • /
    • pp.101-109
    • /
    • 2011
  • The Riemann's zeta function $\zeta(s)$ has been known as answer for a number of primes $\pi$(x) less than given number x. In prime number theorem, there are another approximation function $\frac{x}{lnx}$,Li(x), and R(x). The error about $\pi$(x) is R(x) < Li(x) < $\frac{x}{lnx}$. The logarithmic integral function is Li(x) = $\int_{2}^{x}\frac{1}{lnt}dt$ ~ $\frac{x}{lnx}\sum\limits_{k=0}^{\infty}\frac{k!}{(lnx)^k}=\frac{x}{lnx}(1+\frac{1!}{(lnx)^1}+\frac{2!}{(lnx)^2}+\cdots)$. This paper shows that the $\pi$(x) can be represent with finite Li(x), and presents generalized prime counting function $\sqrt{{\alpha}x}{\pm}{\beta}$. Firstly, the $\pi$(x) can be represent to $Li_3(x)=\frac{x}{lnx}(\sum\limits_{t=0}^{{\alpha}}\frac{k!}{(lnx)^k}{\pm}{\beta})$ and $Li_4(x)=\lfloor\frac{x}{lnx}(1+{\alpha}\frac{k!}{(lnx)^k}{\pm}{\beta})}k\geq2$ such that $0{\leq}t{\leq}2k$. Then, $Li_3$(x) is adjusted by $\pi(x){\simeq}Li_3(x)$ with ${\alpha}$ and error compensation value ${\beta}$. As a results, this paper get the $Li_3(x)=Li_4(x)=\pi(x)$ for $x=10^k$. Then, this paper suggests a generalized function $\pi(x)=\sqrt{{\alpha}x}{\pm}{\beta}$. The $\pi(x)=\sqrt{{\alpha}x}{\pm}{\beta}$ function superior than Riemann's zeta function in representation of prime counting.

ASYMPTOTIC BEHAVIOR OF THE INVERSE OF TAILS OF HURWITZ ZETA FUNCTION

  • Lee, Ho-Hyeong;Park, Jong-Do
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.6
    • /
    • pp.1535-1549
    • /
    • 2020
  • This paper deals with the inverse of tails of Hurwitz zeta function. More precisely, for any positive integer s ≥ 2 and 0 ≤ a < 1, we give an algorithm for finding a simple form of fs,a(n) such that $$\lim_{n{\rightarrow}{\infty}}\{\({\sum\limits_{k=n}^{\infty}}{\frac{1}{(k+a)^s}}\)^{-1}-f_{s,a}(n)\}=0$$. We show that fs,a(n) is a polynomial in n-a of order s-1. All coefficients of fs,a(n) are represented in terms of Bernoulli numbers.

Multipliers of Bergman Spaces

  • Kwak, Do Young;Kim, Gwang-Hui
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.1 no.1
    • /
    • pp.27-32
    • /
    • 1988
  • In this paper, we study the multipliers of $A^p_q$ into $L^{p^{\prime}}$ when 0 < p' < p. For this purpose, we study the condition on the measure ${\mu}$ satisfying $A^p_q{\subset}A^{p^{\prime}}(d{\mu})$. It turns out that the quotient $k_q={\mu}/v_q$ over hyperbolic ball of radius less than 1 belongs to $L^s_q$, where $\frac{1}{s}+\frac{p^{\prime}}{p}=1$. For the proof, we replace the norm of $k_q$ by the Riemann sum, and then use a result of interpolation theory.

  • PDF

Development and Validation of Exposure Models for Construction Industry: Tier 2 Model (건설업 유해화학물질 노출 모델의 개발 및 검증: Tier-2 노출 모델)

  • Kim, Seung Won;Jang, Jiyoung;Kim, Gab Bae
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.2
    • /
    • pp.219-228
    • /
    • 2014
  • Objectives: The major objective of this study was to develop a tier 2 exposure model combining tier 1 exposure model estimates and worker monitoring data and suggesting narrower exposure ranges than tier 1 results. Methods: Bayesian statistics were used to develop a tier 2 exposure model as was done for the European Union (EU) tier 2 exposure models, for example Advanced REACH Tools (ART) and Stoffenmanager. Bayesian statistics required a prior and data to calculate the posterior results. In this model, tier 1 estimated serving as a prior and worker exposure monitoring data at the worksite of interest were entered as data. The calculation of Bayesian statistics requires integration over a range, which were performed using a Riemann sum algorithm. From the calculated exposure estimates, 95% range was extracted. These algorithm have been realized on Excel spreadsheet for convenience and easy access. Some fail-proof features such as locking the spreadsheet were added in order to prevent errors or miscalculations derived from careless usage of the file. Results: The tier 2 exposure model was successfully built on a separate Excel spreadsheet in the same file containing tier 1 exposure model. To utilize the model, exposure range needs to be estimated from tier 1 model and worker monitoring data, at least one input are required. Conclusions: The developed tier 2 exposure model can help industrial hygienists obtain a narrow range of worker exposure level to a chemical by reflecting a certain set of job characteristics.