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EVALUATIONS OF SOME QUADRATIC EULER SUMS

Xin Si and Ce Xu

Abstract. This paper develops an approach to the evaluation of qua-

dratic Euler sums that involve harmonic numbers. The approach is based

on simple integral computations of polylogarithms. By using the ap-
proach, we establish some relations between quadratic Euler sums and

linear sums. Furthermore, we obtain some closed form representations
of quadratic sums in terms of zeta values and linear sums. The given

representations are new.

1. Introduction

Euler sums are real numbers, originally defined by Euler, that have been
much studied in recent years because of their many surprising properties and
the many places they appear in mathematics and mathematical physics. There
are many conjectures concerning the values of Euler sums, for example see
[3,6,10,13,19,20]. The subject of this paper is Euler sums, which are the infinite
sums whose general term is a product of harmonic numbers (or alternating
harmonic numbers) of index n and a power of n−1 (or (−1)n−1n−1). The
nth generalized harmonic numbers and nth generalized alternating harmonic
numbers are defined by

ζn(k) :=

n∑
j=1

1

jk
, Ln(k) :=

n∑
j=1

(−1)j−1

jk
, k, n ∈ N := {1, 2, 3, . . .},(1)

where Hn := ζn(1) =
∑n
j=1

1
j is the natural harmonic number. The classical

linear Euler sum is defined by

S(p; q) :=

∞∑
n=1

1

nq

n∑
k=1

1

kp
,(2)

where p, q are positive integers with q ≥ 2 and the quantity w := p+ q is called
the weight. The earliest results on linear sums S(p; q) are due to Euler who
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elaborated a method to reduce double sums of small weight to certain rational
linear combinations of products of zeta values. In particular, he proved the
simple relation in 1775 (see [3, 13])

S(1; k) =

∞∑
n=1

Hn

nk
=

1

2

{
(k + 2) ζ (k + 1)−

k−2∑
i=1

ζ (k − i) ζ (i+ 1)

}
,(3)

and determined the explicit values of zeta values function at even integers:

ζ (2m) =
(−1)

m
B2m

2 (2m)!
(2π)

2m
,

where Bk ∈ Q are the Bernoulli numbers defined by the generating function
(see [1, 4, 5])

x

ex − 1
:=

∞∑
k=0

Bk
xk

k!
.

It is easy to verify that B0 = 1, B1 = − 1
2 , B2 = 1

6 , B4 = − 1
30 , and B2m+1 = 0

for m ≥ 1. The Riemann zeta function and alternating Riemann zeta function
are defined respectively by

ζ(s) :=

∞∑
n=1

1

ns
, <(s) > 1 and ζ̄ (s) :=

∞∑
n=1

(−1)
n−1

ns
, < (s) ≥ 1.

Obviously, for <(s) > 1, ζ̄ (s) =
(
1− 1

2s−1

)
ζ (s) . The general multiple zeta

functions are defined as

ζ (s1, s2, . . . , sm) :=
∑

n1>n2>···>nm>0

1

ns11 n
s2
2 · · ·n

sm
m
,

where s1 + · · ·+ sm is called the weight and m is the multiplicity.
Euler conjectured that the linear sums S(p; q) would be reducible to zeta

values whenever p + q is odd, and even gave what he hoped to obtain the
general formula. In [6], D. Borwein, J. M. Borwein and R. Girgensohn proved
conjecture and formula, and in [3], D. H. Bailey, J. M. Borwein and R. Gir-
gensohn demonstrated that it is “very likely” that linear sums with p+ q > 7,
p+ q even, are not reducible.

Next, we introduce the generalized Euler sums. For integers q, p1, . . . , pm
with q ≥ 2, we define the generalized Euler sums as

S (p1, p2, . . . , pm; q) :=

∞∑
n=1

Xn (p1)Xn (p2) · · ·Xn (pm)

nq
,(4)

where Xn (pi) = ζn (pi) if pi > 0, and Xn (pi) = Ln (−pi) otherwise. In below,
if p < 0, we will denote it by −p. For example,

S (2, 3̄, 5, 7̄; q) =

∞∑
n=1

ζn (2)Ln (3) ζn (5)Ln (7)

nq
.
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Similarly, for q ∈ N, we define

S (p1, p2, . . . , pm; q̄) :=

∞∑
n=1

Xn (p1)Xn (p2) · · ·Xn (pm)

nq
(−1)

n−1
.(5)

We call w := |p1| + |p2| + · · · + |pm| + |q| the weight of the Euler sums
S(p1, p2, . . . , pm; q). Hence, by the definition of S(p1, p2, . . . , pm; q), we know
that the linear sums are altogether four types:

S (p; q) =

∞∑
n=1

ζn (p)

nq
, S (p̄; q) =

∞∑
n=1

Ln (p)

nq
,

S (p; q̄) =

∞∑
n=1

ζn (p)

nq
(−1)

n−1
, S (p̄; q̄) =

∞∑
n=1

Ln (p)

nq
(−1)

n−1
.

The study of these Euler sums was started by Euler. After that many dif-
ferent methods, including partial fraction expansions, Eulerian Beta integrals,
summation formulas for generalized hypergeometric functions and contour in-
tegrals, have been used to evaluate these sums. The relationship between the
values of the Riemann zeta function and Euler sums has been studied by many
authors, for details and historical introductions, please see [2, 3, 6–20]. For ex-
ample, in [13], Philippe Flajolet and Bruno Salvy gave explicit reductions to
zeta values for all linear sums S (p; q) , S (p̄; q) , S (p; q̄) , S (p̄; q̄) with w := p+ q
odd. Moreover, they proved the following conclusion: If p1 + p2 + q is even,
and p1 > 1, p2 > 1, q > 1, the quadratic sums

S(p1, p2; q) =

∞∑
n=1

ζn (p1) ζn (p2)

nq

are reducible to linear sums (see Theorem 4.2 in the reference [13]). It is
well known that all quadratic sums S(p1, p2; q) with |p1| + |p2| + |q| ≤ 4 were
reducible to zeta values and polylogarithms (explicit evaluations please see
[19,21]). In [20], we proved that all Euler sums of the form S(1, p; q) for weights
p + q + 1 ∈ {4, 5, 6, 7, 9} with p ≥ 1 and q ≥ 2 are expressible polynomially in
terms of zeta values. For weight 8, all such sums are the sum of a polynomial
in zeta values and a rational multiple of S(2; 6).

The main purpose of this paper is to evaluate some quadratic Euler sums
which involve harmonic numbers and alternating harmonic numbers. In this
paper, we will prove that all quadratic sums

S(1, p+ 1; p+ 2m) =

∞∑
n=1

Hnζn (p+ 1)

np+2m
,

S(1, p+ 2m; p+ 1) =

∞∑
n=1

Hnζn (p+ 2m)

np+1

are reducible to polynomials in zeta values and to linear sums, where p,m ∈ N.
Moreover, we also prove that, for p ∈ N \ {1}, m ∈ N ∪ {0}, the quadratic
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combinations

S(1̄, p+ 2m+ 1; p) + S(1̄, p; p+ 2m+ 1)

=

∞∑
n=1

{
Ln (1) ζn (p+ 2m+ 1)

np
+
Ln (1) ζn (p)

np+2m+1

}
,

S(1̄, p+ 2m; p)− S(1̄, p; p+ 2m)

=

∞∑
n=1

{
Ln (1) ζn (p+ 2m)

np
− Ln (1) ζn (p)

np+2m

}
and

S(1, p+2m+2; p)−S(1, p; p+2m+2) =

∞∑
n=1

{
Hnζn (p+ 2m+ 2)

np
− Hnζn (p)

np+2m+2

}
reduce to linear sums and polynomials in zeta values.

2. Main theorems and proofs

In this section, by calculating the integrals of polylogarithm functions, we
will establish some explicit relationships which involve quadratic sums and
linear sums. The polylogarithm function is defined as follows

Lip (x) :=

∞∑
n=1

xn

np
, <(p) > 1, |x| ≤ 1,

with Li1(x) = − log(1− x), x ∈ [−1, 1). First, we give the following Theorem,
which will be useful in the development of the main results.

Theorem 2.1. Let m, p ≥ 2 be positive integers. Then the following identity
holds:

∞∑
n=1

ζ (m) ζn (p)− ζ (p) ζn (m)

n
= ζ (p)

∞∑
n=1

Hn

nm
− ζ (m)

∞∑
n=1

Hn

np

+ ζ (m) ζ (p+ 1)− ζ (p) ζ (m+ 1) .(6)

Proof. We construct the generating function

y =

∞∑
n=1

{Hnζn (m)− ζn (m+ 1)}xn−1, x ∈ (−1, 1).(7)

By definition, the harmonic numbers satisfy the recurrence relation

ζn+1 (m) = ζn (m) +
1

(n+ 1)
m .

Then the sum on the right hand side of (7) is equal to

∞∑
n=1

{Hnζn (m)− ζn (m+ 1)}xn−1
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=

∞∑
n=1

{(
Hn + 1

n+1

)(
ζn (m) + 1

(n+1)m

)
−
(
ζn (m+ 1) + 1

(n+1)m+1

)}
xn

=

∞∑
n=1

{
Hnζn (m)− ζn (m+ 1) + Hn

(n+1)m + ζn(m)
n+1

}
xn.

By simple calculation, we get
∞∑
n=1

{Hnζn (m)− ζn (m+ 1)}xn−1 =

∞∑
n=1

{
Hn

(n+ 1)
m +

ζn (m)

n+ 1

}
xn

1− x
.(8)

Multiplying (8) by lnp−1x and integrating over (0, 1), we obtain the formula
∞∑
n=1

Hnζn (m)− ζn (m+ 1)

np
=

∞∑
n=1

{
Hn

(n+ 1)
m +

ζn (m)

n+ 1

}
{ζ (p)− ζn (p)}.(9)

After some straightforward manipulations, formula (9) can be written as
∞∑
n=1

{
Hnζn (m)

np
+
Hnζn (p)

nm

}
= ζ (p)

∞∑
n=1

Hn

nm
+

∞∑
n=1

Hn

np+m
+

∞∑
n=1

ζn (m)

np+1

−
∞∑
n=1

ζn (m+1)

np
+

∞∑
n=1

ζn (m)

n
{ζ (p)−ζn (p)} .(10)

Change (m, p) to (p,m), the result is
∞∑
n=1

{
Hnζn (p)

nm
+
Hnζn (m)

np

}
= ζ (m)

∞∑
n=1

Hn

np
+

∞∑
n=1

Hn

nm+p
+

∞∑
n=1

ζn (p)

nm+1

−
∞∑
n=1

ζn (p+1)

nm
+

∞∑
n=1

ζn (p)

n
{ζ (m)−ζn (m)} .(11)

Therefore, combining (10) and (11), we obtain the desired result. The proof of
Theorem 2.1 is completed. �

Proceeding in a similar fashion to evaluation of Theorem 2.1, we consider
the following function

y =

∞∑
n=1

{ζn (1, a+ 1) ζn (p, a+ 1)− ζn (p+ 1, a+ 1)}xn+a−1, x ∈ (−1, 1) ,

where the partial sums ζn (p, a+ 1) for p ≥ 1 of Hurwitz zeta function is defined
as

ζn (p, a+ 1) :=

n∑
k=1

1

(k + a)
p , a /∈ N− := {−1,−2,−3, . . .} .

The Hurwitz zeta function is defined by

ζ (p, a+ 1) :=

∞∑
n=1

1

(n+ a)
p , < (p) > 1, a /∈ N−.
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By a similar argument as in the proof of Theorem 2.1, we deduce the more
general identity

∞∑
n=1

ζ (m, a+ 1) ζn (p, a+ 1)− ζ (p, a+ 1) ζn (m, a+ 1)

n+ a

= ζ (p, a+ 1)

∞∑
n=1

ζn (1, a+ 1)

(n+ a)
m − ζ (m, a+ 1)

∞∑
n=1

ζn (1, a+ 1)

(n+ a)
p

+ ζ (m, a+ 1) ζ (p+ 1, a+ 1)− ζ (m+ 1, a+ 1) ζ (p, a+ 1) .

When a = 0, the result is formula (6).

Theorem 2.2. Let p ≥ 2,m ≥ 0 be integers and x ∈ [−1, 1). Then the
following identity holds:

(−1)
p−1

∞∑
n=1

{
ζn (p+ 2m+ 1)

np
+

ζn (p)

np+2m+1

}( n∑
k=1

xk

k

)
(12)

=

p+2m∑
i=1

(−1)
i−1

Lip+2m+2−i (x)

∞∑
n=1

ζn (p)

ni
xn

−
p−1∑
i=1

(−1)
i−1

Lip+1−i (x)

∞∑
n=1

ζn (p+ 2m+ 1)

ni
xn

+ (−1)
p

ln (1− x)

∞∑
n=1

{
ζn (p+ 2m+ 1)

np
+

ζn (p)

np+2m+1

}
(1− xn).

Proof. By the definition of polylogarithm function and Cauchy product for-
mula, we can verify that

Lim (x)

1− x
=

∞∑
n=1

ζn (m)xn, x ∈ (−1, 1).(13)

Now, we consider the integral∫ x

0

Lip (t) Lip+2m+1 (t)

t (1− t)
dt, x ∈ (−1, 1) .

First, by virtue of (13), we obtain∫ x

0

Lip (t) Lip+2m+1 (t)

t (1− t)
dt =

∞∑
n=1

ζn (p)

∫ x

0

tn−1Lip+2m+1 (t)dt

=

∞∑
n=1

ζn (p+ 2m+ 1)

∫ x

0

tn−1Lip (t)dt.(14)

On the other hand, using integration by parts we deduce that∫ x

0

tn−1Lip (t) dt =

p−1∑
i=1

(−1)
i−1x

n

ni
Lip+1−i (x) +

(−1)
p

np
ln (1− x) (xn − 1)
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− (−1)
p

np

(
n∑
k=1

xk

k

)
.(15)

In fact, by using the elementary integral identity

∫ 1

0

xn−1lnmx ln (1−x)dx=(−1)
m+1

m!

 Hn

nm+1
−

m∑
j=1

ζ (j+1)−ζn (j+1)

nm+1−j

 ,

then multiplying (15) by lnm−1(x)
x and integrating over the interval (0, 1), we

have the following recurrence relation∫ 1

0

xn−1lnmxLip (x)dx(16)

= m

p−1∑
i=1

(−1)
i

ni

∫ 1

0

xn−1lnm−1xLip+1−i (x)dx+m!(−1)
m+p−1 ζn (m+ 1)

np

+m!
(−1)

m+p−1

np

Hn

nm
−
m−1∑
j=1

ζ (j + 1)− ζn (j + 1)

nm−j
− ζ (m+ 1)

 .

Substituting (15) into (14), we get∫ x

0

Lip (t) Lip+2m+1 (t)

t (1− t)
dt(17)

=

p+2m∑
i=1

(−1)
i−1

Lip+2m+2−i (x)

∞∑
n=1

ζn (p)

ni
xn

+ (−1)
p

ln (1− x)

∞∑
n=1

ζn (p)

np+2m+1
(1− xn)

+ (−1)
p
∞∑
n=1

ζn (p)

np+2m+1

(
n∑
k=1

xk

k

)

=

p−1∑
i=1

(−1)
i−1

Lip+1−i (x)

∞∑
n=1

ζn (p+ 2m+ 1)

ni
xn

+ (−1)
p−1

ln (1− x)

∞∑
n=1

ζn (p+ 2m+ 1)

np
(1− xn)

+ (−1)
p−1

∞∑
n=1

ζn (p+ 2m+ 1)

np

(
n∑
k=1

xk

k

)
.

By a direct calculation, we deduce the result. �
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Noting that when x approach 1, by using (2.1), we obtain the result

lim
x→1

{
Lim (x)

∞∑
n=1

ζn (p)

n
xn − Lip (x)

∞∑
n=1

ζn (m)

n
xn

}
(18)

=

∞∑
n=1

ζ (m) ζn (p)− ζ (p) ζn (m)

n

= ζ (p)S (1;m)− ζ (m)S (1; p) + ζ (m) ζ (p+ 1)− ζ (p) ζ (m+ 1) ,

where p,m ∈ N \ {1}. Hence, letting x → 1 and x → −1 in Theorem 2.2 and
combining (18), we get the following results.

Corollary 2.3. Let p ≥ 2,m ≥ 0 be integers. Then we have

(−1)p−1{S (1, p+ 2m+ 1; p) + S (1, p; p+ 2m+ 1)}(19)

= ζ (p)S(1; p+ 2m+ 1)− ζ (p+ 2m+ 1)S(1; p)

+ ζ (p+ 1) ζ (p+ 2m+ 1)− ζ (p) ζ (p+ 2m+ 2)

+

p+2m∑
i=2

(−1)
i−1

ζ (p+ 2m+ 2− i)S(p; i)

−
p−1∑
i=2

(−1)
i−1

ζ (p+ 1− i)S(p+ 2m+ 1; i).

Corollary 2.4. Let p ≥ 2,m ≥ 0 be integers. Then we have

(−1)
p {S (1̄, p+ 2m+ 1; p) + S (1̄, p; p+ 2m+ 1)}(20)

=

p+2m∑
i=1

(−1)
i−1

ζ̄ (p+ 2m+ 2− i)S(p; ī)

−
p−1∑
i=1

(−1)
i−1

ζ̄ (p+ 1− i)S(p+ 2m+ 1; ī)

+ (−1)
p

ln 2{S(p+ 2m+ 1; p) + S(p; p+ 2m+ 1)}
+ (−1)

p
ln 2{S(p+ 2m+ 1; p̄) + S(p; p+ 2m+ 1)}.

In the same way as in the proof of (12), we obtain the following Theorem.

Theorem 2.5. For p ∈ N \ {1}, m ∈ N ∪ {0} and x ∈ [−1, 1). Then the
following identity holds:

(−1)
p−1

∞∑
n=1

{
ζn (p+ 2m)

np
− ζn (p)

np+2m

}( n∑
k=1

xk

k

)
(21)

=

p+2m−1∑
i=1

(−1)
i−1

Lip+2m+1−i (x)

∞∑
n=1

ζn (p)

ni
xn
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−
p−1∑
i=1

(−1)
i−1

Lip+1−i (x)

∞∑
n=1

ζn (p+ 2m)

ni
xn

+ (−1)
p

ln (1− x)

∞∑
n=1

{
ζn (p+ 2m)

np
− ζn (p)

np+2m

}
(1− xn).

Proof. Similarly to the proof of Theorem 2.2, considering integral∫ x

0

Lip (t) Lip+2m (t)

t (1− t)
dt, x ∈ (−1, 1) .

Then with the help of formula (2.10) we may easily deduce the result. �

Similarly, in (21), taking x→ 1 and x→ −1, by using (18), we can give the
following Corollaries.

Corollary 2.6. For integers p ∈ N \ {1} and m ∈ N ∪ {0}, we have

(−1)
p−1 {S (1, p+ 2m; p)− S (1, p; p+ 2m)}(22)

= ζ (p)S(1; p+ 2m)− ζ (p+ 2m)S(1; p)

+ ζ (p+ 1) ζ (p+ 2m)− ζ (p) ζ (p+ 2m+ 1)

+

p+2m−1∑
i=2

(−1)
i−1

ζ (p+ 2m+ 1− i)S(p; i)

−
p−1∑
i=2

(−1)
i−1

ζ (p+ 1− i)S(p+ 2m; i).

Corollary 2.7. For integers p ∈ N \ {1} and m ∈ N ∪ {0}, we have

(−1)
p {S (1̄, p+ 2m; p)− S (1̄, p; p+ 2m)}(23)

=

p+2m−1∑
i=1

(−1)
i−1

ζ̄ (p+ 2m+ 1− i)S(p; ī)

−
p−1∑
i=1

(−1)
i−1

ζ̄ (p+ 1− i)S(p+ 2m; ī)

+ (−1)
p

ln 2 {S (p+ 2m; p)− S (p; p+ 2m)}
+ (−1)

p
ln 2

{
S (p+ 2m; p̄)− S

(
p; p+ 2m

)}
.

Theorem 2.8. For l1, l2,m ∈ N and x, y, z ∈ [−1, 1), we have the following
relation

∞∑
n=1

ζn (l1;x) ζn (l2; y)

nm
zn +

∞∑
n=1

ζn (l1;x) ζn (m; z)

nl2
yn(24)

+

∞∑
n=1

ζn (l2; y) ζn (m; z)

nl1
xn
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=

∞∑
n=1

ζn (m; z)

nl1+l2
(xy)

n
+

∞∑
n=1

ζn (l1;x)

nm+l2
(yz)

n
+

∞∑
n=1

ζn (l2; y)

nl1+m
(xz)

n

+ Lim (z) Lil1 (x) Lil2 (y)− Lil1+l2+m (xyz) ,

where the partial sum ζn (l;x) is defined by ζn (l;x) :=
∑n
k=1

xk

kl
.

Proof. We construct the function

F (x, y, z) =

∞∑
n=1

{ζn (l1;x) ζn (l2; y)− ζn (l1 + l2;xy)} zn−1.

By the definition of ζn (l;x), we have

F (x, y, z) = zF (x, y, z) +

∞∑
n=1

{
ζn (l1;x)

(n+ 1)
l2
yn+1 +

ζn (l2; y)

(n+ 1)
l1
xn+1

}
zn.(25)

Moving zF (x, y, z) from right to left and then multiplying (1 − z)−1 to the
equation (25) and integrating over the interval (0, z), we obtain

∞∑
n=1

ζn (l1;x) ζn (l2; y)− ζn (l1 + l2;xy)

n
zn

=

∞∑
n=1

{
ζn (l1;x)

(n+ 1)
l2
yn+1 +

ζn (l2; y)

(n+ 1)
l1
xn+1

}
{Li1 (z)− ζn (1; z)}.(26)

Furthermore, using integration and the following formula
∞∑
n=1

{
ζn (l1;x)

(n+ 1)
l2
yn+1 +

ζn (l2; y)

(n+ 1)
l1
xn+1

}
= Lil1 (x) Lil2 (y)− Lil1+l2 (xy) ,

we can obtain (24). �

Putting (x, y, z) = (−1, 1, 1), (l1, l2,m) = (1, p + 2m + 1, p) and (x, y, z) =
(−1,−1,−1), (l1, l2,m) = (1, p+ 2m+ 1, p) in (24), we can give the following
Corollaries.

Corollary 2.9. For integers p ∈ N\{1} and m ∈ N∪{0}, the following identity
holds:

S (1̄, p+ 2m+ 1; p) + S (1̄, p; p+ 2m+ 1) + S (p, p+ 2m+ 1; 1̄)(27)

= S(p; p+ 2m+ 2) + S(1̄; 2p+ 2m+ 1) + S(p+ 2m+ 1; p+ 1)

+ ln 2ζ (p+ 2m+ 1) ζ (p)− ζ̄ (2p+ 2m+ 2) .

Corollary 2.10. For integers p ∈ N and m ∈ N ∪ {0}, the following identity
holds:

S(1̄, p+ 2m+ 1; p̄) + S(1̄, p; p+ 2m+ 1) + S(p̄, p+ 2m+ 1; 1̄)(28)

= S(p̄; p+ 2m+ 2) + S(1̄; 2p+ 2m+ 1) + S(p+ 2m+ 1; p+ 1)

+ ln 2ζ̄ (p+ 2m+ 1) ζ̄ (p)− ζ̄ (2p+ 2m+ 2) .
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3. Closed form of Euler sums

In this section, we give some linear relations among quadratic Euler sums
by using Theorem 2.2 and Theorem 2.5. We now give the following theorems.

Theorem 3.1. For integers p ∈ N \ {1} and m ∈ N ∪ {0}, we have

(−1)
p−1 {S (2, p+ 2m+ 1; p) + S (2, p; p+ 2m+ 1)}(29)

=

p+2m∑
i=1

p+2m+1−i∑
j=1

(−1)
i+j

ζ (p+ 2m+ 3− i− j)S(p; i+ j)

−
p−1∑
i=1

p−i∑
j=1

(−1)
i+j

ζ (p+ 2− i− j)S(p+ 2m+ 1; i+ j)

− (−1)
p
ζ (2) {ζ (p) ζ (p+ 2m+ 1) + ζ (2p+ 2m+ 1)}

+ (−1)
p

(p+ 2m+ 1)S(1, p; p+ 2m+ 2)

+ (−1)
p
pS(1, p+ 2m+ 1; p+ 1).

Proof. Multiplying (12) by 1
x and integrating over (0,1), and using (15), we

deduce Theorem 3.1 holds. �

Theorem 3.2. For integers p ∈ N \ {1} and m ∈ N ∪ {0}, we have

(−1)
p−1 {S (2, p+ 2m; p)− S (2, p; p+ 2m)}(30)

=

p+2m−1∑
i=1

p+2m−i∑
j=1

(−1)
i+j

ζ (p+ 2m+ 2− i− j)S(p; i+ j)

−
p−1∑
i=1

p−i∑
j=1

(−1)
i+j

ζ (p+ 2− i− j)S(p+ 2m; i+ j)

− (−1)
p−1

ζ (2) {S(p; p+ 2m)− S(p+ 2m; p)}

+ (−1)
p−1

(p+ 2m)S(1, p; p+ 2m+ 1)

− (−1)
p−1

pS(1, p+ 2m; p+ 1).

Proof. By a similar argument as in the proof of Theorem 3.1, multiplying (21)
by 1

x and integrating over (0,1), and combining (15), we deduce Theorem 3.2
holds. �

From [13,20], we know that for p ∈ N \ {1} and m ∈ N ∪ {0}, the quadratic
sums

S(1, 2; 2m+ 1) =
Hnζn (2)

n2m+1
,

S(2, p+ 2m; p) =
ζn (2) ζn (p+ 2m)

np
,



500 X. SI AND C. XU

S(2, p : p+ 2m) =
ζn (2) ζn (p)

np+2m
,

are reducible to linear sums. Hence, from (30), we have the corollary.

Corollary 3.3. For integers p ∈ N \ {1} and m ∈ N ∪ {0}, the quadratic
combination

(p+ 2m)S(1, p; p+ 2m+ 1)− pS(1, p+ 2m; p+ 1)

are reducible to linear sums and to polynomials in zeta values.

On the other hand, in Corollary 2.3, we prove that for integers p ∈ N \ {1}
and m ∈ N ∪ {0}, the quadratic combination

S(1, p+ 2m+ 1; p) + S(1, p; p+ 2m+ 1)

can be expressed as a rational linear combination of products of zeta values
and linear sums. Replacing p by p + 1 and m by m − 1 in Corollary 2.3, we
obtain the following corollary.

Corollary 3.4. For p,m ∈ N, the combination

S(1, p+ 2m; p+ 1) + S(1, p+ 1; p+ 2m)

is a rational linear combination of products of zeta values and linear sums.

Moreover, we note that

(p+ 2m)S (1, p; p+ 2m+ 1) + pS (1, p+ 1; p+ 2m)

= {(p+ 2m)S (1, p; p+ 2m+ 1)− pS (1, p+ 2m; p+ 1)}
+ p {S (1, p+ 2m; p+ 1) + S (1, p+ 1; p+ 2m)} .

Therefore, from Corollary 3.3 and Corollary 3.4, we know that the combination

(p+ 2m)S (1, p; p+ 2m+ 1) + pS (1, p+ 1; p+ 2m)

are reducible to linear sums with p ∈ N \ {1} and m ∈ N. Since the quadratic
sums S(1, 2; 2m+ 1) reduce to linear sums and polynomials in zeta values. So,
we obtain the following description of quadratic Euler sums S(1, p+ 1; p+ 2m)
and S(1, p+ 2m; p+ 1).

Theorem 3.5. For integers p ∈ N and m ∈ N, the quadratic sums

S(1, p+1; p+2m) =

∞∑
n=1

Hnζn (p+ 1)

np+2m
, S(1, p+2m; p+1) =

∞∑
n=1

Hnζn (p+ 2m)

np+1

are reducible to linear sums.

In the following examples we collect the high-order results of quadratic Euler
sums. We used the following identities which can be easily derived from (19)
and (30).
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Example 3.1. Some illustrative examples follow.

S(1, 2; 3) = − 101

48
ζ (6) +

5

2
ζ2 (3) ,

S(1, 3; 2) =
227

48
ζ (6)− 3

2
ζ2 (3) ,

S(1, 2; 5) = − 343

48
ζ (8) + 12ζ (3) ζ (5)− 5

2
ζ (2) ζ2 (3)− 3

4
S(2; 6),

S(1, 3; 4) = − 511

144
ζ (8) + 7ζ (3) ζ (5) + ζ (2) ζ2 (3)− 25

4
S(2; 6),

S(1, 4; 3) =
443

48
ζ (8)− 21

2
ζ (3) ζ (5)− 1

2
ζ (2) ζ2 (3) +

25

4
S(2; 6),

S(1, 5; 2) =
1063

144
ζ (8)− 13

2
ζ (3) ζ (5) + ζ (2) ζ2 (3) +

3

4
S(2; 6),

S(1, 2; 7) = − 1331

80
ζ(10) +

43

4
ζ2(5) +

41

2
ζ(3)ζ(7)− 7ζ(2)ζ(3)ζ(5)

− 2ζ2(3)ζ(4)− 5

4
S(2; 8),

S(1, 3; 6) = − 247

40
ζ(10)− 5

4
ζ2(5)− 15

2
ζ(3)ζ(7) + 12ζ(2)ζ(3)ζ(5)

− 21

4
S(2, 8)− ζ(2)S(2, 6),

S(1, 4; 5) =
6033

160
ζ(10)− 14ζ2(5)− 4ζ(3)ζ(7)− 15ζ(2)ζ(3)ζ(5)

− 1

2
ζ2(3)ζ(4) +

21

2
S(2; 8) +

5

2
ζ(2)S(2; 6),

S(1, 5; 4) = − 6569

240
ζ(10) + 16ζ2(5) + 10ζ(3)ζ(7) + 4ζ(2)ζ(3)ζ(5)

+ ζ2(3)ζ(4)− 21

2
S(2; 8),

S(1, 6; 3) =
1043

160
ζ(10)− 17

4
ζ2(5)− 15

2
ζ(3)ζ(7) + 4ζ(2)ζ(3)ζ(5)

− 1

2
ζ2(3)ζ(4)− 5

2
ζ(2)S(2; 6) +

21

4
S(2; 8),

S(1, 7; 2) =
242

15
ζ(10)− 25

4
ζ2(5)− 19

2
ζ(3)ζ(7) + ζ2(3)ζ(4)

+ ζ(2)S(2; 6) +
5

4
S(2; 8).

From (20) and (27), we have the following corollary.

Corollary 3.6. For p ∈ N \ {1} and m ∈ N ∪ {0}, the alternating quadratic
sums

S(p, p+ 2m+ 1; 1̄) =

∞∑
n=1

ζn (p) ζn (p+ 2m+ 1)

n
(−1)

n−1
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are reducible to linear sums. We have

S(p, p+ 2m+ 1; 1̄)(31)

= S(p; p+ 2m+ 2) + S(1̄; 2p+ 2m+ 1) + S(p+ 2m+ 1; p+ 1)

+ ln 2ζ (p+ 2m+ 1) ζ (p)− ζ̄ (2p+ 2m+ 2)

+ (−1)p−1
p+2m∑
i=1

(−1)
i−1

ζ̄ (p+ 2m+ 2− i)S(p; ī)

− (−1)p−1
p−1∑
i=1

(−1)
i−1

ζ̄ (p+ 1− i)S(p+ 2m+ 1; ī)

− ln 2{S(p+ 2m+ 1; p) + S(p; p+ 2m+ 1)}
− ln 2{S(p+ 2m+ 1; p̄) + S(p; p+ 2m+ 1)}.

Letting p = 2, m = 0 in (20) and (31), we obtain

S(1̄, 3; 2) + S(1̄, 2; 3) =
3

4
ζ2 (3) +

7

4
ζ (6) +

5

8
ζ (2) ζ (3) ln 2

− 2ζ (2) Li4

(
1

2

)
+

5

4
ζ (4) ln22− 1

12
ζ (2) ln42,(32)

S(2, 3; 1̄) = − 161

64
ζ (6) +

31

16
ζ (5) ln 2 +

9

32
ζ2 (3) +

3

8
ζ (2) ζ (3) ln 2

+ 2ζ (2) Li4

(
1

2

)
− 5

4
ζ (4) ln22 +

1

12
ζ (2) ln42 + S(2; 4̄)− S(3̄; 3).(33)

In [21], we gave the following formula

S(1̄, 2; 3) =
29

8
ζ (2) ζ (3) ln 2− 93

32
ζ (5) ln 2− 1855

128
ζ (6) +

17

16
ζ2 (3)

− S(1̄; 5̄) + S(2̄; 4) + 4S(2; 4̄) + 8S(1; 5̄).(34)

Substituting (34) into (32), we arrive at the conclusion that

S(1̄, 3; 2) =
2079

128
ζ (6) +

93

32
ζ (5) ln 2− 5

16
ζ2 (3)− 3ζ (2) ζ (3) ln 2

− 2ζ (2) Li4

(
1

2

)
+

5

4
ζ (4) ln22− 1

12
ζ (2) ln42 + S(1̄; 5̄)(35)

− S(2̄; 4)− 4S(2; 4̄)− 8S(1; 5̄).

Similarly, taking (x, y, z) = (1, 1, 1) , (l1, l2,m) = (2, p+ 2m+ 1, p) in (24), we
get

S (2, p+ 2m+ 1; p) + S (2, p; p+ 2m+ 1) + S (p, p+ 2m+ 1; 2)(36)

= S (2; 2p+ 2m+ 1) + S (p; p+ 2m+ 3) + S (p+ 2m+ 1; p+ 2)

+ ζ (2) ζ (p) ζ (p+ 2m+ 1)− ζ (2p+ 2m+ 3) .
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From (29) and (36), we know that the quadratic sums

S(p, p+ 2m+ 1; 2) =

∞∑
n=1

ζn (p) ζn (p+ 2m+ 1)

n2

can be expressed in terms of zeta values, linear sums and

S(1, p; p+ 2m+ 2) =

∞∑
n=1

Hnζn (p)

np+2m+2
,

S(1, p+ 2m+ 1; p+ 1) =

∞∑
n=1

Hnζn (p+ 2m+ 1)

np+1
.

In the last of this section, we give some examples. First, in [20], we showed
that all quadratic Euler sums of the form

S(1,m; p) =

∞∑
n=1

Hnζn (m)

np
, (m+ p+ 1 ≤ 9)

are reducible to Q-linear combinations of single zeta monomial with the ad-
dition of linear sums {S(2; 6)} for weight 8 and give explicit formulas. From
(29), (30) and (36), we can give the following examples

2S(2, 3; 2) + S(2, 2; 3) =
13

2
ζ (3)ζ (4)− 3ζ (7) ,

S(2, 3; 2) + S(2, 2; 3) = −179

16
ζ (7) + 8ζ (3) ζ (4) +

5

2
ζ (2) ζ (5) ,

S(2, 2; 4) + 2S(2, 4; 2) = 3ζ (8) + 2S(2; 6),

S(2, 2; 4)− S(2, 4; 2) =
1317

36
ζ (8)− 60ζ (3) ζ (5) + 9ζ (2) ζ2 (3) +

31

2
S(2; 6),

2S(2, 5; 2) + S(2, 2; 5) =
55

2
ζ (9)− 21ζ (2) ζ (7) + 4ζ (3) ζ (6) +

13

2
ζ (4) ζ (5) ,

S(2, 5; 2) + S(2, 2; 5) = −79

72
ζ (9)− 7ζ (2) ζ (7) +

4

3
ζ (3) ζ (6) +

23

2
ζ (4) ζ (5)

+
2

3
ζ3 (3) ,

S(2, 4; 3) + S(2, 3; 4) = −35ζ (9) + 14ζ (2) ζ (7) +
107

12
ζ (3) ζ (6) +

7

2
ζ (4) ζ (5)

− 1

3
ζ3 (3) ,

S(2, 4; 3) + S(2, 3; 4) + S(3, 4; 2) = −77

2
ζ (9) + 21ζ (2) ζ (7) +

15

4
ζ (3) ζ (6)

+ 3ζ (4) ζ (5) .

Therefore, combining related equations, we obtain the following identities.
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Example 3.2. Some results on quadratic Euler sums.

S(2, 2; 3) =

∞∑
n=1

ζ2n (2)

n3
= −155

8
ζ (7) +

19

2
ζ (3) ζ (4) + 5ζ (2) ζ (5) ,

S(2, 3; 2) =

∞∑
n=1

ζn (2) ζn (3)

n2
=

131

16
ζ (7)− 3

2
ζ (3) ζ (4)− 5

2
ζ (2) ζ (5) ,

S(2, 2; 4) =

∞∑
n=1

ζ2n (2)

n4
= 11S(2; 6) +

457

18
ζ (8) + 6ζ (2) ζ2 (3)− 40ζ (3) ζ (5) ,

S(2, 4; 2) =

∞∑
n=1

ζn (2) ζn (4)

n2
= −9

2
S(2; 6)− 403

36
ζ (8)− 3ζ (2) ζ2 (3)

+ 20ζ (3) ζ (5) ,

S(2, 2; 5) =

∞∑
n=1

ζ2n (2)

n5
= −1069

36
ζ (9) +

4

3
ζ3 (3) + 7ζ (2) ζ (7)− 4

3
ζ (3) ζ (6)

+
33

2
ζ (4) ζ (5) ,

S(2, 5; 2) =

∞∑
n=1

ζn (2) ζn (5)

n2
=

2059

72
ζ (9)− 2

3
ζ3 (3)− 14ζ (2) ζ (7)

+
8

3
ζ (3) ζ (6)− 5ζ (4) ζ (5) ,

S(3, 4; 2) =

∞∑
n=1

ζn (3) ζn (4)

n2
= −7

2
ζ (9) + 7ζ (2) ζ (7)− 31

6
ζ (3) ζ (6)

− 1

2
ζ (4) ζ (5) +

1

3
ζ3 (3) .

Moreover, we use Mathematica tool to check numerically each of the spe-
cific identities listed. The numerical values of nonlinear Euler sums of weights
{7,8,9,10}, to 30 decimal digits, see Table 1.

In fact, by using the methods of this paper, it is possible to establish other
identities of Euler sums. For example, taking m = 1 in (16), we deduce that∫ 1

0

xn−1 lnxLip (x)dx =

p−1∑
i=1

p−i∑
j=1

(−1)
i+j−1 ζ (p+ 2− i− j)

ni+j

+ (−1)
p
p
Hn

np+1
+ (−1)

p ζn (2)− ζ (2)

np
.(37)

Multiplying (12) and (21) by ln x
x , and integrating over the interval (0,1), we

arrive at the conclusion that

(−1)
p

[S (3, p+ 2m+ 1; p) + S (3, p; p+ 2m+ 1)](38)

= (−1)
p
ζ (3) [S (p+ 2m+ 1; p) + S (p; p+ 2m+ 1)]
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Table 1. Numerical approximation

Euler sum
Numerical values of closed form

(30 decimal digits)
Numerical approximation of

Euler sum (30 decimal digits)
S(2, 2; 3) 1.35125578526281388688070479101 1.35125578526281388688070478635
S(2, 3; 2) 2.04014406352629668230178759593 2.04014406352629668230178759172
S(1, 2; 5) 1.07388087034296588059339568891 1.07388087034296588059339568663
S(1, 3; 4) 1.15201859049597540982393939989 1.15201859049597540982393939372
S(1, 4; 3) 1.37755320390542981268777869872 1.37755320390542981268777869712
S(1, 5; 2) 2.45339834780017683307966649793 2.45339834780017683307966649461
S(2, 2; 4) 1.13642391274089928376327915373 1.13642391274089928376327915559
S(2, 4; 2) 1.95980117454124719492773304920 1.95980117454124719492773304287
S(2, 2; 5) 1.05972458873705638208576920975 1.05972458873705638208576920818
S(2, 5; 2) 1.92499254625584068819896689186 1.92499254625584068819896688762
S(3, 4; 2) 1.80313006078587093607835773253 1.80313006078587093607835772809
S(1, 2; 7) 1.01603499621822946463309621255 1.01603499621822946463309621221
S(1, 3; 6) 1.03017876630576928913732006061 1.03017876630576928913732005893
S(1, 4; 5) 1.06164990978502285301181351196 1.06164990978502285301181351270
S(1, 5; 4) 1.13783419529420067466663388885 1.13783419529420067466663388537
S(1, 6; 3) 1.35867450783449320806721637607 1.35867450783449320806721637012
S(1, 7; 2) 2.41561649536052525591387317796 2.41561649536052525591387317514

+ (−1)
p+1 p (p+ 1)

2
S (1, p+ 2m+ 1; p+ 2)

+ (−1)
p+1 (p+ 2m+ 1) (p+ 2m)

2
S (1, p; p+ 2m+ 3)

+ (−1)
p+1

p [S (2, p+ 2m+ 1; p+ 1)− ζ (2)S (p+ 2m+ 1; p+ 1)]

+ (−1)
p+1

(p+ 2m+ 1) [S (2, p; p+ 2m+ 2)− ζ (2)S (p; p+ 2m+ 2)]

−
p−1∑
l=1

p−l∑
i=1

p+1−i−l∑
j=1

(−1)
i+j+l

ζ (p+ 3− i− j− l)S (p+ 2m+ 1; i+ j + l)

+

p+2m∑
l=1

p+2m+1−l∑
i=1

p+2m+2−i−l∑
j=1

(−1)
i+j+l

ζ (p+ 2m+ 4− i− j − l)

S (p; i+ j + l) ,

and

(−1)
p

[S (3, p+ 2m; p)− S (3, p; p+ 2m)](39)

= (−1)
p
ζ (3) [S (p+ 2m; p)− S (p; p+ 2m)]

+ (−1)
p+1 p (p+ 1)

2
S (1, p+ 2m; p+ 2)

+ (−1)
p (p+ 2m) (p+ 2m+ 1)

2
S (1, p; p+ 2m+ 2)

+ (−1)
p+1

p [S (2, p+ 2m; p+ 1)− ζ (2)S (p+ 2m; p+ 1)]

+ (−1)
p

(p+ 2m) [S (2, p; p+ 2m+ 1)− ζ (2)S (p; p+ 2m+ 1)]
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−
p−1∑
l=1

p−l∑
i=1

p+1−i−l∑
j=1

(−1)
i+j+l

ζ (p+ 3− i− j − l)S (p+ 2m; i+ j + l)

+

p+2m−1∑
l=1

p+2m−l∑
i=1

p+2m+1−i−l∑
j=1

(−1)
i+j+l

ζ (p+ 2m+ 3− i− j − l)

S (p; i+ j + l) .

Putting m = 1, p = 2 in (39), we have

∞∑
n=1

{
ζn (3) ζn (4)

n2
− ζn (3) ζn (2)

n4

}
= − 1063

36
ζ (9) + 14ζ (2) ζ (7)− 37

6
ζ (3) ζ (6) + 13ζ (4) ζ (5) .

Combining related equations, we can obtain

∞∑
n=1

ζn (2) ζn (3)

n4
=

937

36
ζ (9) +

1

3
ζ3 (3)− 7ζ (2) ζ (7)

+ ζ (3) ζ (6)− 27

2
ζ (4) ζ (5) ,

∞∑
n=1

ζn (2) ζn (4)

n3
= −2197

36
ζ (9)− 2

3
ζ3 (3) + 21ζ (2) ζ (7)

+
95

12
ζ (3) ζ (6) + 17ζ (4) ζ (5) .

Remark 3.1. From [6,20], we have the partial fraction decomposition

1

xs(1− x)
t =

s∑
j=1

A
(s,t)
j

xj
+

t∑
j=1

B
(s,t)
j

(1− x)
j

(s, t ≥ 0, s+ t ≥ 1),

where

A
(s,t)
j :=

(
s+ t− j − 1

s− j

)
and B

(s,t)
j :=

(
s+ t− j − 1

t− j

)
.

Hence, it is easy to see that for positive integers n,m, p,∫ 1

0

xn−1 lnm(x)Lip(x)dx

= (−1)mm!

∞∑
k=1

1

kp(n+ k)m+1

= (−1)m+pm!

p−1∑
j=1

(−1)j+1

(
p+m− j − 1

m

)
ζ(j + 1)

np+m−j
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+ (−1)m+pm!

m∑
j=1

(
p+m− j − 1

p− 1

)
ζ(j + 1)− ζn(j + 1)

np+m−j

+ (−1)m+p+1m!

(
p+m− 1

p− 1

)
Hn

np+m
.

Thus, multiplying (12) and (21) by lnr (x)
x , and integrating over the interval

(0,1), we can obtain two general formulas.
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