• 제목/요약/키워드: Riemann Problem

검색결과 66건 처리시간 0.022초

THE EXACT SOLUTION OF THE GENERALIZED RIEMANN PROBLEM IN THE CURVED GEOMETRIES

  • Kim, Ju-Hong
    • Journal of applied mathematics & informatics
    • /
    • 제7권2호
    • /
    • pp.391-408
    • /
    • 2000
  • In the curved geometries, from the solution of the classical Riemann problem in the plane, the asymptotic solutions of the compressible Euler equation are presented. The explicit formulae are derived for the third order approximation of the generalized Riemann problem form the conventional setting of a planar shock-interface interaction.

THE RIEMANN PROBLEM FOR A SYSTEM OF CONSERVATION LAWS OF MIXED TYPE (II)

  • Lee, Choon-Ho
    • 대한수학회논문집
    • /
    • 제13권1호
    • /
    • pp.37-59
    • /
    • 1998
  • We prove that solutions $u^\epsilon$ for the mixed hyperbolic-elliptic system of conservation laws with the viscosity term are total variation bounded uniformly in $\epsilon$ and that the solution $u^\epsilon$ converges to the solution for the mixed hyperbolic-elliptic Riemann problem as $\epsilon \to 0$.

  • PDF

THE GENERALIZED RIEMANN PROBLEM FOR FIRST ORDER QUASILINEAR HYPERBOLIC SYSTEMS OF CONSERVATION LAWS I

  • Chen, Shouxin;Huang, Decheng;Han, Xiaosen
    • 대한수학회보
    • /
    • 제46권3호
    • /
    • pp.409-434
    • /
    • 2009
  • In this paper, we consider a generalized Riemann problem of the first order hyperbolic conservation laws. For the case that excludes the centered wave, we prove that the generalized Riemann problem admits a unique piecewise smooth solution u = u(t, x), and this solution has a structure similar to the similarity solution u = $U{(\frac{x}{t})}$ of the correspondin Riemann problem in the neighborhood of the origin provided that the coefficients of the system and the initial conditions are sufficiently smooth.

SEMI-HYPERBOLIC PATCHES ARISING FROM A TRANSONIC SHOCK IN SIMPLE WAVES INTERACTION

  • Song, Kyungwoo
    • 대한수학회지
    • /
    • 제50권5호
    • /
    • pp.945-957
    • /
    • 2013
  • In this paper we consider a Riemann problem, in particular, the case of the presence of the semi-hyperbolic patches arising from a transonic shock in simple waves interaction. Under this circumstance, we construct global solutions of the two-dimensional Riemann problem of the pressure gradient system. We approach the problem as a Goursat boundary value problem and a mixed initial-boundary value problem, where one of the boundaries is the transonic shock.

CONSTRUCTION OF THE 2D RIEMANN SOLUTIONS FOR A NONSTRICTLY HYPERBOLIC CONSERVATION LAW

  • Sun, Meina
    • 대한수학회보
    • /
    • 제50권1호
    • /
    • pp.201-216
    • /
    • 2013
  • In this note, we consider the Riemann problem for a two-dimensional nonstrictly hyperbolic system of conservation laws. Without the restriction that each jump of the initial data projects one planar elementary wave, six topologically distinct solutions are constructed by applying the generalized characteristic analysis method, in which the delta shock waves and the vacuum states appear. Moreover we demonstrate that the nature of our solutions is identical with that of solutions to the corresponding one-dimensional Cauchy problem, which provides a verification that our construction produces the correct global solutions.

TWO-DIMENSIONAL RIEMANN PROBLEM FOR BURGERS' EQUATION

  • Yoon, Dae-Ki;Hwang, Woon-Jae
    • 대한수학회보
    • /
    • 제45권1호
    • /
    • pp.191-205
    • /
    • 2008
  • In this paper, we construct the analytic solutions and numerical solutions for a two-dimensional Riemann problem for Burgers' equation. In order to construct the analytic solution, we use the characteristic analysis with the shock and rarefaction base points. We apply the composite scheme suggested by Liska and Wendroff to compute numerical solutions. The result is coincident with our analytic solution. This demonstrates that the composite scheme works pretty well for Burgers' equation despite of its simplicity.

ON THE OSTROWSKI INEQUALITY FOR THE RIEMANN-STIELTJES INTEGRAL ${\int}_a^b$ f (t) du (t), WHERE f IS OF HÖLDER TYPE AND u IS OF BOUNDED VARIATION AND APPLICATIONS

  • DRAGOMIR, S.S.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제5권1호
    • /
    • pp.35-45
    • /
    • 2001
  • In this paper we point out an Ostrowski type inequality for the Riemann-Stieltjes integral ${\int}_a^b$ f (t) du (t), where f is of p-H-$H{\ddot{o}}lder$ type on [a,b], and u is of bounded variation on [a,b]. Applications for the approximation problem of the Riemann-Stieltjes integral in terms of Riemann-Stieltjes sums are also given.

  • PDF

ON THE OSTROWSKI'S INEQUALITY FOR RIEMANN-STIELTJES INTEGRAL AND APPLICATIONS

  • Dragomir, S.S.
    • Journal of applied mathematics & informatics
    • /
    • 제7권3호
    • /
    • pp.843-859
    • /
    • 2000
  • An Ostrowski type integral inequality for the Riemann-Stieltjes integral ${\int^b}_a$ f(t) du(t), where f is assumed to be of bounded variation on [a, b] and u is of r - H - $H\"{o}lder$ type on the same interval, is given. Applications to the approximation problem of the Riemann-Stieltjes integral in terms of Riemann-Stieltjes sums are also pointed out.

THE DELTA STANDING WAVE SOLUTION FOR THE LINEAR SCALAR CONSERVATION LAW WITH DISCONTINUOUS COEFFICIENTS USING A SELF-SIMILAR VISCOUS REGULARIZATION

  • LI, XIUMEI;SHEN, CHUN
    • 대한수학회보
    • /
    • 제52권6호
    • /
    • pp.1945-1962
    • /
    • 2015
  • This paper is mainly concerned with the formation of delta standing wave for the scalar conservation law with a linear flux function involving discontinuous coefficients by using the self-similar viscosity vanishing method. More precisely, we use the self-similar viscosity to smooth out the discontinuous coefficient such that the existence of approximate viscous solutions to the delta standing wave for the Riemann problem is established and then the convergence to the delta standing wave solution is also obtained when the viscosity parameter tends to zero. In addition, the Riemann problem is also solved with the standard method and the instability of Riemann solutions with respect to the specific small perturbation of initial data is pointed out in some particular situations.