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TWO-DIMENSIONAL RIEMANN PROBLEM
FOR BURGERS’ EQUATION

DAEKI YOON AND WOONJAE HWANG

ABSTRACT. In this paper, we construct the analytic solutions and nu-
merical solutions for a two-dimensional Riemann problem for Burgers’
equation. In order to construct the analytic solution, we use the charac-
teristic analysis with the shock and rarefaction base points. We apply the
composite scheme suggested by Liska and Wendroff to compute numer-
ical solutions. The result is coincident with our analytic solution. This
demonstrates that the composite scheme works pretty well for Burgers’
equation despite of its simplicity.

1. Introduction

The Riemann problem in two spatial dimensions for scalar conservation laws
is the problem

1) u + f(u)e +g(u)y =0,

with initial data that is piecewise constant on a finite number of wedges centered
at the origin x = 0, y = 0. Of particular interest is the four-wedge problem with
wedges corresponding to the four quadrants (8, = 0,6 = 7/2,03 = 7,04 =
37/2) of the spatial plane, since such initial data is pertinent to numerical
finite difference schemes. The typical Riemann data is given in Figure 1.

The study of the two-dimensional Riemann problem was initiated by Guck-
enheimer [4]. Wagner [14] studied a four-quadrant Riemann problem for the
two dimensional single conservation law. Many works for the scalar equation
have appeared in [3, 8, 9, 16, 17]. A body of work has been also developed for
the system of conservation laws in two dimensions [1, 2, 6, 7, 12, 13, 15, 18].

In section 2, we introduce base points and base curves for rarefaction and
shock. We classify the rarefaction and shock as R*, R~ and $7,57, respec-
tively. We present the composite scheme in section 3. In section 4, we construct

Received December 10, 2007.

2000 Mathematics Subject Classification. Primary 35C05, 35L65, 65MO06.

Key words and phrases. 2D Riemann problem, conservation laws, Burgers’ equation, com-
posite scheme.

This work was financially supported by KRF-2005-003-C00026.

©2008 The Korean Mathematical Society

191



192 DAEKI YOON AND WOONJAE HWANG

FIGURE 1. Initial condition for Riemann problem

the analytic solutions for two-dimensional Riemann problem for Burgers’ equa-
tion. We also present numerical solution by the composite scheme to compare
it with the analytic solution we construct.

2. Base curve

In this section, we introduce the base point and base curve for shock and rar-
efaction. These are very important tools for constructing the analytic solution
for a two-dimensional Riemann problem. We assume that Juuw # 0, guu # 0,
and 0/0u(fuu/guu) # O for any u. This assumption guarantees that the flux
functions in any direction have at most one inflection point [17].

2.1. Rarefaction base curves

Under the change of variables £ = z/t, n = y/t, (1) has the self-similar form

(2) —&ug — nuy + f(u)e + g(u)y, =0.
For u € C!, (2) becomes
3) (fu(w) = Eug + (gu(u) —m)uy =0
whose characteristic form is given by
(4) dn(§)/d€ = (gu(u) = n)/(fu(u) - §)
and
(%) du(€,n(§))/d§ = 0.

From (4) and (5), the characteristic lines are defined by
(6) n = 9u(u) = const, u = const.

5 - fu(u)
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FIGURE 2. Classification of rarefaction and shock (u; > u,),
(a) rarefactions R™, R™, (b) shocks S+, S~

From (6), we note that an u-family level curve with u = ug is a straight line
segment whose tangent passes through the characteristic base point F,(uo) in
the £n-plane having coordinates

(7) Fu(uo) = (fu(uo)?gu(uo))'
We refer to the curve
(8) Fu(u) = (fu(w), gu(u))

as the rarefaction base curve. It is easy to show that the rarefaction base curve
is monotonic increasing and concave in the £7-plane. Rarefaction waves can be
classified according to the direction of the gradient of u across the wave relative
to the direction toward the base curve.

Definition ([16]). A rarefaction wave is classified as R*(R™) if Ve nu and the
direction toward the base curve of the characteristic lines of the wave form a
right- (left-) hand system.

The R* and the R~ rarefaction waves are indicated in Figure 2 (a). We
note that u; > u, in Figure 2.

2.2, Shock base curves

From (2) we have the Rankine-Hugoniot condition for a piecewise smooth
shock curve n = n(¢),

d77 _ n—ag(ul7uT)
©) E e oT(wu)

ur) — g(ur
= ——— o (u,u,) = g(w) = g(ur) )
U — Uy Uy — Uyp
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FIGURE 3. Four shocks(S™S~S+S*)with the initial data
(1,2,4,3). (a) analytic solution, (b) numerical solution
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FIGURE 4. Four shocks(S™S~S*"ST) with the initial data
(1, 3,4, 2): numerical solution

From (9) we see that shock point in the £7-plane separating u; and u, lies on
a curve segment whose tangent at the shock point passes through the shock
base point ¢(u;, u,) in the £€n-plane having coordinates

(11) o(ur, ur) = (07 (ug, uy), 09 (ug, ur)).

The notation o(u;, u,) and o(u,,u;) specify the same base point. The curve of
base points

(12) o(u,ur) = (0 (u, ur), 09 (u, ur))

denotes the shock base curve for the state u,.. Shock base points are used anal-
ogously to rarefaction base points to locally position shocks involving the states
u; and u,. It is easy to show that shock base curve is monotonic increasing
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FIGURE 5. Three shocks and one rarefaction(S~S~R*S™)
with the initial data (1,2,3,4). (a) analytic solution, (b) nu-
merical solution

and concave in the £7-plane. A shock wave can be classified according to the
relative direction of the shock normal and tangent vectors at each point.

Definition ([16]). A shock wave is classified as St (S~) if at each point the
normal and tangent (pointing towards the shock base point) vectors of the
shock form a right-hand (left-hand) system.

The ST and the S~ shock waves are indicated in Figure 2 (b). The details
on base point and base curve can be found in [5, 6, 7, 16].

For f(u) = g(u), the rarefaction and shock base points are located on the
straight line n = £.

3. Composite scheme

For the two-dimensional scalar conservation law (1), the first half step of
new Lax-Friedrichs(LF) is given by

1

12

Ul ageise = UL+ Ul + Ul + Ul ]
At

(13) - E[Fiﬂ,jﬂ/z —F ji1/2]
At

- E[Gi+1/2,j+l — Git1/2,]

where

1 Yit1 At/2 .
Fiprji12= m/ /O f(U(xiy1,y,t))dtdy,

Yi
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FIGURE 6. Three shocks and one rarefaction(R~S~STS5+)
with the initial data (2,1,4,3). (a) analytic solution, (b) nu-
merical solution

and ﬁ(a:H_l,y, t) is the solution, as a function of y and t, of the Riemann
problem with initial data

. Un . . for y < Yi+1/2 3
Ulx; 3 ?O = i+1,5° ’ ,
(Ti+1,4,0) { i+1,j+10 0T Y >Yjiy1/e.

Similarly,

1 Tit1 At/2 R
Git12,541 = (At/2)bs L /o g(U(z,yj11,t))dtdz,

and U (z,yj+1,t) is the solution, as a function of & and ¢, of the Riemann
problem with initial data

U 0) = Uiy,lj+1? fOI‘.’E<Ii+1/2 )
(xvyi+17 ) - n for £ > z.
+1,5+17 “t+1/2:

Liska and Wendroff {10, 11] proposed to replace the integrated exact Riemann
solutions by a one-dimensional Lax-Friedriechs approximation. The fluxes F
and G are evaluated at the LF approximate solution of the 1-D Riemann prob-
lems, giving

(14) Fi-l—l,j+1/2 = f(a{UH-l,j-{-l + Ui+1,j} + ZA—y{g(UHI,j-H) - g([]z‘-f-l,j)})y

and

(15) Git12,541 = 9(§[Ui+1,j+1 + U]+ ZA_z[f( 1,541) — f(Uz',j-f-l)])‘
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FIGURE 7. Two shocks and two rarefactions(S™R™R*S™)
with the initial data (1,3,2,4). (a) analytic solution, (b) nu-
merical solution

The second order accurate predictor-corrector scheme is then

n+1 __ n
Ui =Uj;

At n+1/2 +1/2
T 2Az [f(Ui+1//2,j+1/2) + fUL 2 m12)

n41/2 n+1/2
(16) - f(Ui—1/2,j+1/2> - f(Ui—l/Q,j—l/Q)]

_A_t +1/2 +1/2
- 2Ay [g(UZH/ZjH/z) + (U o j41y2)

nt1/2 n+1/2
- 9(U¢+1/2,j—1/2) - 9(U¢—1/2,j—1/2)} :

The details can be found in [10, 11]. This second order method is called Cor-
rected Lax-Friedrichs(CF). The idea of the composite scheme is some com-
position of a second-order method and a first-order method. After applying
second-order method for a couple of times, the first-order method is applied
to reduce oscillations created by the second-order method. And this process
is repeated. We apply CFLF4, that is, we apply CF scheme three times and
then the LF scheme follows once. Both CF and LF schemes constitute two
steps. CF scheme constitutes applying (16) together with (13) and LF scheme
constitutes applying (12) twice. The 2-dimensional Burgers’ equation is

(17) ug + (%u% + (%uQ)y =0.
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FIGURE 8. Two shocks and two rarefactions(S™R™RYS™)

with the initial data (2,3,1,4). (a) analytic solution, (b) nu-
merical solution

Since f(u) = g(u) = $u?, we have

+1/2 1
Uﬁug,jﬂ/z = Z[Uz‘r,lj + Uiy, YUl + Ul ]
At
(18) - E[Fi+1,j+1/2 — F; j11/9]
At

- E[Gi+1/2,j+1 - Gi+1/2,j]a

1/1 n n At n 2 n 2 2
(19) Fiy1 412 = E(E[Ui—i-l,j-i-l + U+ @[( otg41)” — (Ul ) ]) )

1/1,., . At 2
(20) Giy12,541 = 3 (5[ i T U0l + 8_A_.Z,_[(Ui+1,j+1)2 - (U3j+1)2]) ’
and
Ut = U

At [( n+1/2 )2

N i+1/2,j+1/2
+1/2 2 +1/2 2 +1/2 2
(21) + (Ui??f—l/2,j—1/2) - (Uz‘n—l/?.,j+l/2) - (Uz'n—1/2,j—1/2) ]
At n+1/2 2
_4Ay ( i+1/2,j+1/2)
+1/2 2 +1/2 2 n+1/2 2
+ (Uin—1/2,j+1/2) - (Uz'r-Ll—l/E,j—l/Q) - (Ui—1/2,j—1/2) ]

For Burgers’ equation, C'F scheme constitutes two steps: applying (18) with
(19) and (20) and then applying (21). LF scheme also constitutes two steps:
applying (18) with (19) and (20) twice.
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FIGURE 9. Two shocks and two rarefactions(R~S~StR™)
with the initial data (3,1,4,2). (a) analytic solution, (b) nu-
merical solution

4. Analytic solution and numerical results

We construct the solution for Burgers’ equation with the Riemann data:
{u1,u2,us,u4} = {1,2,3,4}. So we have all 4! = 24 different cases. The initial
data of values 1,2,3,4 are assigned in each of the four quadrants. The prob-
lems are solved on [—3, 1] x [~1, 1]. We use 400 x 400 uniform meshes. For
Burgers equation, the rarefaction base point is (u,u) and the shock base point
is ((ur +ur)/2, (ug +ur)/2). We look for the solution at ¢ = 0.1. So we scale to
(0.1u,0.1u) and (0.1(u; +u,)/2,0.1(w + u,)/2), respectively. Both rarefaction
and shock base curves become y = z. To construct the analytic solution, we
use the base points given in section 2.

To compute the numerical solution, we apply the composite scheme, CFLF4.
4.1. Four shocks

Consider the case (u1,uz,us,us) = (1,2,4,3). In this case, the solution
contains only shocks. The S shocks are formed at the initial discontinuities
6 =0, 37” and the S~ shocks are formed at the initial discontinuities 8 = 2,
The S shock at § = 5 is heading for the shock base point (0.15,0.15) and the
S~ shock at § = 7 is heading for the shock base point (0.3,0.3). They meet
at the point A. To determine the interaction at the point A, we have to solve
the Riemann problem with the Riemann data 1 and 4. As a result, another S~
shock is formed at A and it ends at the shock base point (0.25,0.25).

On the other hand, the ST shock at # = 0 is heading for the shock base
point (0.2,0.2) and the S* shock 6§ = 3Z is heading for the shock base point
(0.35,0.35). They meet at the point B, where we have to solve another Rie-
mann problem with the Riemann data 4 and 1. Another St shock is formed
at B and it ends at the shock base point (0.25,0.25) and this completes the
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Fi1GURE 10. Two shocks and two rarefactions(S~R~S*TR™)
with the initial data (4,1,3,2). (a) analytic solution, (b) nu-
merical solution
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FIGURE 11. Two shocks and two rarefactions(R~S~R*S™)
with the initial data (2,1,3,4). (a) analytic solution, (b) nu-
merical solution

construction of the analytic solution. The analytic solution is given in Figure
3 (a) and numerical solution computed by the composite scheme is given in
Figure 3 (b). The case (u1,uz2,us,us4) = (1,3,4,2) is the inversion of the case
(u1,ug,us,uq) = (1,2,4,3). If we reflect the Riemann data (1, 3,4, 2) with re-
spect to the line y = , it gives the exactly same structure of the case (1,2,4, 3).
The numerical solution with the Riemann data (1, 3,4, 2) is given in Figure 4.
Because of this, we present 12 solutions instead of all 24 solutions.
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FIGURE 12. Two shocks and two rarefactions(R=S~R*S™)
with the initial data (3,1,2,4). {(a) analytic solution, (b) nu-
merical solution

4.2, Three shocks and one rarefaction

For initial conditions (u1,u2,us,u4) = (1,2,3,4), (1,4,3,2), (2,1,4,3), and
(2,3,4,1), we have three shocks and one rarefaction. Because of inversion, we
consider only (1,2,3,4) and (2,1, 4, 3) cases. Consider the case (u1, uz, us, us) =
(1,2,3,4). In this case, the ST shock is formed at the initial discontinuities
6 = 0 and the S~ shocks are formed at the initial discontinuities § = 5.
Two S~ shocks meet at the point A. Another S~ shock is formed at the point
A and it ends at the shock base point B (0.2,0.2). The ST shock is heading
for the shock base point (0.25,0.25). The R™ rarefaction is formed at the ini-
tial discontinuities § = 321 Left and right ends of rarefaction fan are heading
for rarefaction base points (0.3,0.3) and (0.4,0.4), respectively. The ST shock
meets the RT rarefaction wave at the point C. The ST shock completely pen-
etrates the R rarefaction and at point D we have to solve another Riemann
problem with the Riemann data 3 and 1. Another S is formed at point D
and it ends at the shock base point B (0.2,0.2).

From C to D, the ST is not a straight shock but a curved shock. It satisfies
the ordinary differential equation
(22) dn _n-3u+l)
@ &—

2T 3<cu<y,
(u+1)

N [eof—

and we can integrate it to find the route of the curved shock. The analytic
solution is given in Figure 5 (a) and numerical solution is given in Figure 5 (b).

Similarly, we can construct the analytic solution for the case (u1,ug, us, u4)
= (2,1,4,3). The analytic and numerical solutions for this case are given in
Figure 6 (a) and (b), respectively.
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FIGURE 13. One shock and three rarefactions(R~S~R*R™)
with the initial data (4,1,2,3). (a) analytic solution, (b) nu-
merical solution

4.3. Two shocks and two rarefactions

We have two shocks and two rarefactions for initial conditions (u1,us, us, us)
= (1,3,2,4), (2,3,1,4), (3,1,4,2), (4,1,3,2), (2,1,3,4), and (3,1,2,4). The
corresponding inversion cases are (u1,uz,us,us) = (1,4,2,3), (2,4,1,3), (3,2,
4,1), (4,2,3,1), (2,4,3,1), and (3,4, 2, 1), respectively.

Consider the case (u1,u2,us,us) = (1,3,2,4). The S~ shock meets the R~
rarefaction at the point A and it penetrates rarefaction fan completely. At the
point B we have to solve the Riemann problem with the Riemann data 1 and
2. The S~ shock is formed at the point B and it ends at the shock base point
E (0.15,0.15). The S* shock interacts the RT rarefaction at the point C' and
it penetrates rarefaction fan completely. At the point D we again have to solve
the Riemann problem with the Riemann data 2 and 1. The S shock is formed
at the point D and it ends at the shock base point E (0.15,0.15). The analytic
solution is given in Figure 7 (a) and numerical solution is given in Figure 7 (b).

For the cases (u1,uz2,us,us) = (2,3,1,4) and (3,1,4,2) we can construct
the analytic solution similarly. The analytic and numerical solutions for these
cases are given in Figure 8 and 9, respectively.

Consider the case (u1,u2,us,us) = (4,1,3,2). The R~ rarefaction meets
the §~ shock at the point A and the Rt rarefaction at the rarefaction base
point D (0.4,0.4). The S~ shock becomes a curved shock at the point A and
it ends at the point C (0.3,0.3). The ST shock begins interaction at the point
B with the RT rarefaction and it terminates with a zero strength at the point
C. The analytic solution is given in Figure 10 (a) and numerical solution is
given in Figure 10 (b).
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FIGURE 14. One shock and three rarefactions(R~R™R"S™)
with the initial data (3,2,1,4). (a) analytic solution, (b) nu-
merical solution

Consider the case (u1,u2,us,u4) = (2,1,3,4). The S~ shock meets the R~
rarefaction at the point A. The S~ shock penetrates the R~ rarefaction fan
completely and we have to solve the Riemann problem at the point B with the
Riemann data 2 and 3. As a result, the S~ shock is formed at the point B and
it ends at the shock base point E (0.25,0.25). The S* shock penetrates the
R™ rarefaction fan completely and the ST shock is formed at the point D and
it ends at the shock base point E. The analytic solution is given in Figure 11
(a) and numerical solution is given in Figure 11 (b).

For the case (u1,us,us3,us) = (3,1,2,4), we can construct the analytic so-
lution similarly. The analytic solution is given in Figure 12 (a) and numerical
solution is given in Figure 12 (b).

4.4. One shock and three rarefactions

We have one shock and three rarefactions for initial conditions (u1, ue, us, u4)
=(4,1,2,3), (4,3,2,1), (3,2,1,4), (3,4, 1,2). Because of inversion, we consider
only (4,1,2,3) and (3,2,1,4) cases.

The S~ shock meets the R~ rarefaction at the point A and it terminates
with a zero strength at the point B (0.2,0.2). The R™ rarefaction is formed at
the initial discontinuity 6 = ?’21 Left and right ends of the rarefaction fan are
heading for the rarefaction base points B (0.2, 0.2) and C (0.3, 0.3), respectively.
Another R* rarefaction is formed at the initial discontinuity 8 = 0. Left and
right ends of the rarefaction fan are heading for the rarefaction base points C'
(0.3,0.3) and D (0.4, 0.4), respectively. The analytic solution is given in Figure
13 (a) and numerical solution is given in Figure 13 (b).

Similarly, we can construct the analytic solution for the case (u1,u2, us, t4)
= (3,2,1,4). The analytic solution is given in Figure 14 (a) and numerical
solution is given in Figure 14 (b).
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FI1GURE 15. Four rarefactions(R™R~™R*R*) with the initial
data (4,2,1,3). (a) analytic solution, (b) numerical solution
4.5. Four rarefactions

For initial conditions (u1,ug, us,us) = (4,2, 1, 3), (4, 3,1, 2), we have all four
rarefactions. Because of inversion, we consider only (4,2, 1,3) case.
The R~ and the R* interact at the rarefaction base point A (0.4,0.4). Two

Rt
RT

meet at the rarefaction base point B (0.3,0.3). Again the R~ and the
interact at the rarefaction base point D (0.1,0.1). Two R~ meet at the

rarefaction base point C (0.2,0.2). The analytic solution is given in Figure 15
(a) and numerical solution is given in Figure 15 (b).

[
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