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THE DELTA STANDING WAVE SOLUTION FOR THE

LINEAR SCALAR CONSERVATION LAW WITH

DISCONTINUOUS COEFFICIENTS USING A SELF-SIMILAR

VISCOUS REGULARIZATION

Xiumei Li and Chun Shen

Abstract. This paper is mainly concerned with the formation of delta
standing wave for the scalar conservation law with a linear flux function
involving discontinuous coefficients by using the self-similar viscosity van-
ishing method. More precisely, we use the self-similar viscosity to smooth
out the discontinuous coefficient such that the existence of approximate
viscous solutions to the delta standing wave for the Riemann problem
is established and then the convergence to the delta standing wave so-
lution is also obtained when the viscosity parameter tends to zero. In
addition, the Riemann problem is also solved with the standard method
and the instability of Riemann solutions with respect to the specific small
perturbation of initial data is pointed out in some particular situations.

1. Introduction

In this paper, we are interested in the scalar conservation law with the linear
flux function involving discontinuous coefficients as follows [14, 20]:

(1.1) ut + (k(x)u)x = 0,

in which k and u are used to denote the velocity and density in the discontinuous
flow respectively. The equation (1.1) has been extensively used in many areas,
such as the particle flows [2, 3, 4] and the polymer flooding of an oil reservoir [17]
etc. It also arises in modeling wave propagation through interfaces where jumps
in k(x) correspond to interfaces between different media [20]. The equation
(1.1) can also be regarded as the simplest example for hyperbolic conservation
laws with discontinuous coefficients.
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If k(x) is allowed to be discontinuous, then the Cauchy problem for (1.1)
usually does not possess a weak L∞-solution except for some particular ini-
tial data and thus it is natural to consider the solution u(x, t) in the sense of
distributions. In this situation, by using the standard technique in [19] for hy-
perbolic conservation laws with discontinuous coefficients, it is more convenient
to view (1.1) as a system by adding the trivial term kt = 0, which enables us
to alternatively consider a system

(1.2)

{

kt = 0,

ut + (ku)x = 0.

In [17], Hu at first investigated the Riemann problem for the system (1.2) with
the particular initial data

(1.3) (k, u)(x, 0) = (k±, u±), ±x > 0,

where k± and u± are all given constants. The Dirac measure-valued solution
was introduced in the Riemann solutions in some non-classical situations and
then he discovered that the Dirac measure-valued solution can be obtained as
the limit of the following self-similar viscosity regularized system

(1.4)

{

kt = εtkxx,

ut + (ku)x = εtuxx,

by using the standard Dafermos technique [7, 8]. In [14], Gosse and James have
also obtained the Dirac measure-valued solution to the Riemann problem (1.2)
and (1.3) in the numerical computation.

In this note, we consider an alternative self-similar viscosity regularized sys-
tem as follows:

(1.5)

{

kt = εtkxx,

ut + (ku)x = 0,

which enables us to see the formation of delta standing wave solution to the
Riemann problem (1.2) and (1.3) in a relatively simpler manner. In other
words, we only smooth out the discontinuous coefficient k(x) which also en-
ables us to establish the existence of approximate viscous solutions to the delta
standing wave for the Riemann problem (1.2) and (1.3) and then obtain the
convergence to the delta standing wave when the viscosity parameter tends to
zero. Here we are also interested in the effect of singular diffusion matrices
where the viscosity term only appears in the first equation to smooth out the
discontinuous coefficient k(x) and the continuity equation is unchanged.

It is well known that the delta standing wave appears in the Riemann so-
lutions to (1.2) and (1.3) in some situations. To be more precise, for the case
k+ < 0 < k−, the Riemann solution to (1.2) and (1.3) is a delta standing
wave connecting the two constant states (k±, u±) whose propagation speed
and strength are σ = 0 and ω(t) = (k−u− − k+u+)t respectively. The main
purpose of this note is to describe the formation of delta standing wave solution
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to the Riemann problem (1.2) and (1.3) by using a new self-similar viscosity
regularization method (1.5). Thus, we draw our attentions on the Riemann
problem (1.2) and (1.3) in the situation k+ < 0 < k− and we can see that the
delta standing wave can be obtained in the limit ε → 0 of the solutions to the
regularized system (1.5) with the Riemann initial data (1.3). It should be em-
phasized that the Riemann problem (1.2) and (1.3) may have infinitely many
solutions provided that the Riemann initial data (1.3) satisfy k− < 0 < k+
and u−u+ < 0. For this reason, we restrict ourselves to consider the situation
u ≥ 0 only and it is also reasonable from the physical sense due to the fact
that u is regarded as the flow density. In addition, we also point out that the
Riemann solution to (1.2) and (1.3) may be unstable with respect to specific
small perturbation of Riemann initial data (1.3) in some situations. Here we
take a detailed example to illustrate this phenomenon.

In addition, the coupling of two different conservation laws at a fixed inter-
face has been widely investigated as

(1.6)

{

ut + fL(u) = 0 for x < 0,
ut + fR(u) = 0 for x > 0,

where fα (α = L,R) are two smooth flux functions. The coupled Riemann
problem for the system (1.6) can also be investigated provided that an interface
condition is given at x = 0 to guarantee the well-posedness of the initial value
problem for the system (1.6). The self-similar viscosity regularization is also
carried out in [1, 5] for the system (1.6) with some particular flux functions. In
particular, the discontinuous linear flux function fL = kLu and fR = kRu was
taken in [13] as the particular interest in the numerical calculation.

Recently, the formation of the delta standing wave for the scalar conservation
law (1.1) has also been considered in [34] by adopting the local linearization
technique to treat the discontinuous coefficient k(x) in (1.1). More precisely,
the linear function in the perturbed interval [−ε, ε] to connect kl and kr has
been adopted in order to linearize the discontinuous coefficient k(x), such that
the characteristics are curved in the perturbed region (x, t) ∈ [−ε, ε]× [0,+∞)
and the value of u along each of the characteristic curves also changes in the
perturbed region. In contrast to the result in [34], the Leray-type regularization
technique has also been used in [28] to deal with the discontinuous coefficient
k(x) in (1.1), such that all the characteristics are curved in the global physical
space (x, t) with t ≥ 0 and the value of u along each of the characteristic curves
varies with the time.

The self-similar viscosity vanishing approach was introduced by Dafermos [8]
and usually known as the Dafermos regularization technique in literature. This
method has been carried out widely in the construction of Riemann solutions for
broad classes of 2×2 systems including the equations of isentropic, Lagrangian,
gas dynamics. In particular, it has been adopted in [22, 32] for the admissibility
of weak solutions of the Riemann problem for hyperbolic systems of conserva-
tion laws and the admissibility criterion was called as the wave-fan criterion



1948 XIUMEI LI AND CHUN SHEN

in [7]. Special attentions were also paid in [12, 16, 17, 24, 31, 33, 35, 37, 38]
to the formation of the delta shock waves in the Riemann solutions for some
hyperbolic systems of conservation laws. There exist numerous excellent pa-
pers for the related equations and results about the measure-valued solutions
such as the delta shock wave for hyperbolic systems of conservation laws, see
[6, 15, 18, 23, 25, 26] for instance.

The paper is organized as follows. In Section 2, the Riemann problem (1.2)
and (1.3) is considered for the sake of self-contained. Especially, the delta
standing wave does occur in the Riemann solution when k+ < 0 < k−. In
addition, the instability of Riemann solution with respect to specific small
perturbation of initial data is illustrated by a detailed example. In Section 3,
for the case k+ < 0 < k−, it is shown that there exists a smooth solution for the
regularized system (1.5) with the initial data (1.3). Consequently, by taking
the limit ε→ 0, one can see that the limit of the regularized smooth solution is
just the delta standing wave, which is identical with the corresponding Riemann
solution to (1.2) and (1.3) when k+ < 0 < k−.

2. The Riemann problem for (1.2) and (1.3)

In this section, we simply sketch some results on the Riemann problem (1.2)
and (1.3) and the detailed study can be found in [17]. We can also refer to
[21, 25, 31, 33, 35, 36, 37] for the related results about the other non-strictly
hyperbolic systems of conservation laws.

The characteristic eigenvalues of (1.2) are λ1 = 0 and λ2 = k respectively.
Thus, it is clear to see that (1.2) is strictly hyperbolic in the phase space
provided that k 6= 0 and is non-strictly hyperbolic on the line k = 0. The
corresponding right characteristic vectors are −→r1 = (k,−u)T and −→r2 = (0, 1)T

respectively. Thus we have ∇λi ·
−→ri = 0 (i = 1, 2), which implies that both the

two characteristic eigenvalues λ1 and λ2 are linearly degenerate. Therefore, the
associated wave for λ1 is a standing wave discontinuity denoted by SW and
the associated wave for λ2 is a contact discontinuity denoted by J .

For the Riemann problem (1.2) and (1.3), if we take the self-similar transform
ξ = x/t, then the initial value problem can be reduced to the boundary problem
for the ordinary differential equations as follows:

(2.1)

{

− ξkξ = 0,

− ξuξ + (ku)ξ = 0,

with the boundary conditions (k, u)(±∞) = (k±, u±).
Then for the bounded discontinuity point ξ = σ, the Rankine-Hugoniot

condition holds:

(2.2)

{

− σ[k] = 0,

− σ[u] + [ku] = 0.
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Therefore, we can get σ1 = 0 and k−u− = k+u+ which corresponds to a
standing wave discontinuity and σ2 = k+ = k− which corresponds to a contact
discontinuity.

Now, we can construct the Riemann solutions to (1.2) and (1.3) as follows:
(1) If k− > k+ > 0 or k+ > k− > 0, then the Riemann solution to (1.2) and

(1.3) can be expressed as SW + J :

(2.3) (k, u)(x, t) =















(k−, u−), x < 0,

(k+,
k−u−
k+

), 0 < x < k+t,

(k+, u+), x > k+t.

(2) If k+ < k− < 0 or k− < k+ < 0, then the Riemann solution to (1.2) and
(1.3) can be expressed as J + SW :

(2.4) (k, u)(x, t) =















(k−, u−), x < k−t,

(k−,
k+u+
k−

), k−t < x < 0,

(k+, u+), x > 0.

(3) If k− < 0 < k+, then the Riemann solution to (1.2) and (1.3) can be
expressed as J + SW + J :

(2.5) (k, u)(x, t) =























(k−, u−), x < k−t,

(k−, 0), k−t < x < 0,

(k+, 0), 0 < x < k+t,

(k+, u+), x > k+t.

Instead of the contact vacuum state in [27], here we shall construct a physically
realistic solution to the Riemann problem (1.2) and (1.3) in this case.

(4) If k+ < 0 < k−, according to the result in [17, 27], we consider that
the Riemann solution to (1.2) and (1.3) is a delta standing wave discontinuity
connecting the two constant states (k−, u−) and (k+, u+). In order to deal with
it, we need the following definition of a delta standing wave solution similar to
the framework introduced in [9] and used in [21, 36] for the delta shock wave
solution.

Definition 2.1. A two-dimensional weighted δ-measure p(s)δS supported on
a smooth curve which is parameterized as S = {(x(s), t(s)) : a < s < b} should
be introduced to define a measure-valued solution as

(2.6) 〈p(s)δS , ψ(x(s), t(s))〉 =

∫ b

a

p(s)ψ(x(s), t(s))
√

x′(s)2 + t′(s)2ds

for any test function ψ ∈ C∞

0 (R×R+).

For convenience, the parameter s = t is chosen and w(t) =
√

1 + (x′(t))2p(t)
is used to denote the strength of the delta shock wave. Suppose that Γ =
{γi | i ∈ I} is a graph in the closed upper half-plane {(x, t) | (x, t) ∈ (−∞,∞)×
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[0,∞)} which contains Lipschitz continuous arcs γi with i ∈ I in which I is a
finite index set. Also suppose that I0 is the subset of I containing all indices of
arcs starting from the x-axis and Γ0 = {x0j | j ∈ I0} is the set of initial points
of the arcs γj with j ∈ I0.

Definition 2.2. Let (k, u) be a pair of distributions where u can be expressed
in the form

(2.7) u(x, t) = û(x, t) + α(x, t)δ(Γ),

in which k, û ∈ L∞(R×R+) and the singular part should be defined by

(2.8) α(x, t)δ(Γ) =
∑

i∈I

αi(x, t)δ(γi).

Let us consider the initial data of the form

(2.9) (k, u)(x, 0) =
(

k0(x), û0(x) +
∑

j∈I0

αj(x
0
j , 0)δ(x− x0j )

)

,

in which k0, û0 ∈ L∞(R), then the above pair of distributions (k, u) are called
as a generalized delta standing wave solution of (1.2) with the initial data (2.9)
if k(x, t) = k(x, 0) = k0(x) and the following integral identity

∫

R+

∫

R

(ûψt + kûψx) dxdt+
∑

i∈I

∫

γi

αi(x, t)
∂ψ(x, t)

∂l
(2.10)

+

∫

R

û0(x)ψ(x, 0)dx +
∑

j∈I0

αj(x
0
j , 0)ψ(x

0
j , 0) = 0,

holds for all test functions ψ ∈ C∞

c (R × R+), in which ∂ψ(x,t)
∂l

denotes the

tangential derivative of a function ψ on the graph γi and
∫

γi
denotes the line

integral along the arc γi.

With the above definition, similar to that in [17, 27], we can also construct
the Riemann solution to (1.2) and (1.3) for the situation k+ < 0 < k− in the
following theorem.

Theorem 2.3 (see [17, 27]). For the situation k+ < 0 < k−, the Riemann

problem (1.2) and (1.3) has a piecewise smooth Riemann solution of the form:

(2.11) (k, u)(x, t) =











(k−, u−), x < 0,

(0, ω(t)δ(x)), x = 0,

(k+, u+), x > 0,

where the strength of delta standing wave can be calculated by

(2.12) ω(t) = (k−u− − k+u+)t.

It is known that certain instability properties with respect to L1-perturba-
tions of initial data is presented for conservation laws with discontinuous flux.
This result can also be applied to some certain Riemann solutions to (1.2) and
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(1.3) for the reason that a piecewise constant approximation also generates an
approximate solution with erroneous qualitative behavior. To be more precise,
as in [30], we can also consider the perturbed Riemann problem for the system
(1.2) with three pieces of constant states as follows:

(2.13) (k, u)(x, 0) =











(k−, u−), x < −ε,

(km, um), −ε < x < ε,

(k+, u+), x > ε,

in which the perturbation parameter ε is positive.

✲

✻ ✻ ✻

✲ ✲

(km, 0)(k−, 0)

(k−, u−)

(k+, u+)

J2

(km, um)

−ε ε

(k−, u−)

(k−, 0)

(k+, u+)

(k−, u−)

(k−,
k+u+

k−
)

(k+, u+)

0
x

J1

t
SW

t
DSW

t

J

x

DSW

x

J

0

SW

(a) (b) (c)

Figure 1. (a) The solution to the perturbed Riemann prob-
lem for (1.2) and (2.13) for a given positive number ε when
k± < 0 < km. (b) The limit ε → 0 of the perturbed Riemann
solution to (1.2) and (2.13) when k± < 0 < km. (c) The cor-
responding solution to the Riemann problem (1.2) and (1.3)
when k± < 0.

Let us take k± < 0 < km as a detailed example to illustrate the situation
that the change in the value of the discontinuous coefficient k(x) in the small
perturbation region [−ε, ε] may change the behavior of the flow greatly. In
this situation, it is clear to see that J1 + SW + J2 starts from (−ε, 0) and the
delta standing wave denoted with DSW starts from (ε, 0) before the interaction
happens. One can see that J2 meetsDSW at (x1, t1) = (ε, 2ε

km
) and the strength

of DSW before the time t1 can be calculated by

(2.14) w(t) = (kmum − k+u+)t for t ≤ t1.

At the time t1, a new Riemann problem with delta initial data can be for-
mulated at the intersection point (x1, t1) whose initial data can be expressed
as

(2.15) (k, u)(x, t1) =











(km, 0), x < ε,

(0, w(t1)δ(x)), x = ε,

(k+, u+), x > ε.

The solution is still a delta standing wave on the line x = ε connecting the two
constant states (km, 0) and (k+, u+), whose strength can also be calculated by

(2.16) w(t)=(kmum− k+u+)t1 − k+u+(t− t1)=kmumt1 − k+u+t for t > t1.
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From the above discussion, the solution to the perturbed Riemann problem
(1.2) and (2.13) can be constructed globally. Let us draw Figure 1(a) to illus-
trate it. It is clear to see that the limit ε→ 0 of the solution to the perturbed
Riemann problem (1.2) and (2.13) is a contact discontinuity followed by a delta
standing wave with the state (k−, 0) between them which can be described as
(see Fig. 1(b)):

(2.17) (k, u)(x, t) =























(k−, u−), x < k−t,

(k−, 0), k−t < x < 0,

(0,−k+u+tδ(x)), x = 0,

(k+, u+), x > 0.

Clearly, the solution (2.17) in this limit situation is obviously different from
the corresponding Riemann solution (2.4) (see Fig. 1(c)) for the case k± < 0.
Thus, we can see that the Riemann solution is unstable with respect to this
small perturbation of Riemann initial data, which reflects the fact that the
Riemann solutions to (1.2) and (1.3) are very sensitive with respect to some
small perturbations of initial data.

3. Viscous regularization of delta standing wave solution

In this section, we draw our attentions on the viscous regularization of delta
standing wave solution to the Riemann problem (1.2) and (1.3). Thus, we shall
consider the Riemann problem for the viscous regularized system (1.5) with
the Riemann initial data (1.3) and take one step further to restrict ourselves
on the situation k+ < 0 < k− only.

By taking the self-similar transformation ξ = x/t on the viscous system (1.5)
and the Riemann initial data (1.3), one can get the following boundary value
problem:

(3.1)

{

− ξkξ = εkξξ,

− ξuξ + (ku)ξ = 0,

with the boundary conditions

(3.2) (k, u)(±∞) = (k±, u±).

In view of the form of the system (3.1), one can see that the solution of the
first equation in (3.1) does not depend on that of the second one in (3.1), such
that we may only consider the first equation in (3.1) in the beginning. In other
words, we may first consider

(3.3)

{

−ξkξ = εkξξ,

k(±∞) = k±.

For the sake of completeness, we describe the result obtained in [17] in the
following lemma.
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Lemma 3.1. For each fixed ε > 0, if k+ < 0 < k−, then there exists a unique

and monotonic smooth solution kε(ξ) to the boundary value problem (3.3). To

be more precise, in the case of k+ < 0 < k−, k
ε(ξ) can be expressed in a fully

explicit form as

(3.4) kε(ξ) = k− +
1

√
2πε

(k+ − k−)

∫ ξ

−∞

exp
(−s2

2ε

)

ds.

According to the expression of kε(ξ) in (3.4), one can easily check the exis-
tence, smoothness, uniqueness and monotonicity of the solution to (3.3). Now,
we turn our attentions on the second equation in (3.1) and consider the exis-
tence of the corresponding solution uε(ξ). Based on the expression of kε(ξ) in
(3.4), one can obtain the following theorem to depict the corresponding solution
uε(ξ).

Theorem 3.2. For each fixed ε > 0, let us suppose that uε(ξ) is a weak solution

of the following boundary value problem:

(3.5)

{

− ξuξ + (kεu)ξ = 0,

u(±∞) = u±,

where kε (ξ) is given by (3.4), such that we also have uε(ξ) ∈ L1(−∞,+∞)
which can be formulated as

(3.6) uε (ξ) =



















u− exp
(

∫ ξ

−∞

kεs
s− kε

ds
)

for ξ < ξεα,

u+ exp
(

∫ +∞

ξ

−kεs
s− kε

ds
)

for ξ > ξεα,

where ξεα is the unique fixed point of ξ = kε(ξ).

Proof. Due to the fact that kε(ξ) is monotonically decreasing, the singularity
point of (3.5) is unique and can be given by the solution of ξ = kε(ξ) which
can be denoted with ξεα. The formula (3.6) can be derived directly from the
equation in (3.5) through integrating from −∞ to ξ for ξ < ξεα and from ξ

to +∞ for ξ > ξεα, respectively. It is clear to see from (3.6) that uε(ξ) is
monotonically increasing for u− > 0 or monotonically decreasing for u− < 0
in the interval (−∞, ξεα), and u

ε(ξ) is monotonically decreasing for u+ > 0 or
monotonically increasing for u+ < 0 in the interval (ξεα,+∞). Furthermore, we
have

(3.7) lim
ξ→ξε

α
−

uε(ξ) = ±∞ (u− ≷ 0),

(3.8) lim
ξ→ξε

α
+
uε(ξ) = ±∞ (u+ ≷ 0).

Thus, the solution of (3.5) can be obtained and expressed as (3.6) by gathering
the two solutions in the regions (−∞, ξεα) and (ξεα,+∞) together.
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Hereafter, let us prove that uε(ξ) is a weak solution of (3.5). Integrating the
equation in (3.5) on [−R, ξ] for −R < ξ < ξεα, we have

(3.9)

∫ ξ

−R

u(s)ds+ u(ξ)(kε(ξ)− ξ) = u(−R)(kε(−R)−R).

Let us introduce

p(ξ) =

∫ ξ

−R

u(s)ds, a(ξ) = kε(ξ)− ξ, A = u(−R)(kε(−R)−R).

Then, the equation (3.9) can be reformulated as

(3.10)

{

a(ξ)p′(ξ) + p(ξ) = A,

p(−R) = 0,

which enables us to have

(3.11) p(ξ) = A
[

1− exp
(

−

∫ ξ

−R

ds

a(s)

)]

.

Recalling that a(ξ) = O(|ξ − ξεα|) as ξ −→ ξεα − 0, one can see that

(3.12) lim
ξ→ξε

α
−0

∫ ξ

−R

ds

a(s)
= +∞.

Passing to the limit ξ −→ ξεα − 0 in (3.11) yields

(3.13) lim
ξ→ξε

α
−0

∫ ξ

−R

u(s)ds = lim
ξ→ξε

α
−0
p(ξ) = A.

In view of (3.9), it is clear to see that

(3.14) lim
ξ→ξε

α
−0
u(ξ)(kε(ξ)− ξ) = 0.

Like as before, one can also conclude that

(3.15) lim
ξ→ξε

α
+0

∫ R

ξ

u(s)ds = u(R)(R− kε(R)),

(3.16) lim
ξ→ξε

α
+0
u(ξ)(ξ − kε(ξ)) = 0.

Combining the equalities (3.13) and (3.15) together implies that

uε(ξ) ∈ L1(−R,+R).

We are now in a position to prove that

(3.17) 〈−ξuξ + (kεu)ξ, ψ〉 = 0

holds for any test function ψ ∈ C∞

0 [−R,R]. If ξ1 and ξ2 satisfy −R < ξ1 <

ξεα < ξ2 < R, then we have

I =

∫ R

−R

(u(ξ)(ξ − kε(ξ))ψ′(ξ) + u(ξ)ψ(ξ))dξ
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=

{

∫ ξ1

−R

+

∫ ξ2

ξ1

+

∫ R

ξ2

}

(u(ξ)(ξ − kε(ξ))ψ′(ξ) + u(ξ)ψ(ξ))dξ

= I1 + I2 + I3.

It is remarkable that

− (u(ξ)(ξ − kε(ξ)))ξ + u(ξ) = −ξuξ + (kεu)ξ = 0.

By using the method of integration by parts, we can estimate from (3.14) and
(3.16) as follows:

|I1| = |u(ξ1)(ξ1 − kε(ξ1))ψ(ξ1)| → 0 as ξ1 → ξεα−,

|I3| = |u(ξ2)(ξ2 − kε(ξ2))ψ(ξ2)| → 0 as ξ2 → ξεα + .

On the other hand, for u(ξ) ∈ L1(−R,+R), we have

|I2| ≤

∫ ξ2

ξ1

|u(ξ)|(|ξ − kε(ξ)||ψ′(ξ)|+ |ψ(ξ)|)dξ → 0

as ξ1 → ξεα − 0 and ξ2 → ξεα + 0.
For the above discussion, we can see that I = 0 is independent of the choices

of ξ1 and ξ2 in the sense of distributions, which enables us to see that (3.17) is
true in the weak sense. Hence, uε(ξ) defined in (3.6) is the unique weak solution
of (3.5) for the reason that R is any sufficiently large and real number. �

Let us denote ξα = limε→0+ α
ε to express the limit of the unique fixed point

ξεα satisfying ξ = kε(ξ), then this point will play a very important role in the
following discussion.

Lemma 3.3. For any η > 0, we have that

(3.18) lim
ε→0+

kε(ξ) =

{

k− for ξ < ξα − η,

k+ for ξ > ξα + η,

holds uniformly in the above intervals.

Proof. For given η > 0, it is easy to take ε > 0 sufficiently small such that the
inequality ξεα < ξα + η

4 is satisfied for the reason that ξα = limε→0+ ξ
ε
α. If we

take ξ1 = ξα + η
2 , then it is clear to see that ξεα < ξ1 −

η
4 . For k+ < 0 < k−,

one achieves kεξ(ξ) < 0. Then, it follows from (3.3) that

(3.19)
−ε

ξ
=
kεξξ(ξ)

kεξ(ξ)
.

By integrating (3.19) from ξ1 to ξ, one can arrive at

(3.20) kεξ(ξ) = kεξ(ξ1) exp
(

∫ ξ

ξ1

−
s

ε
ds
)

.

Furthermore, integrating (3.20) from ξ1 to +∞ again leads to

(3.21) k+ − kε(ξ1) = kεξ(ξ1)

∫ +∞

ξ1

exp
(

∫ ξ

ξ1

−
s

ε
ds
)

dξ.
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Because kε(ξ) is monotonically decreasing in the real axis, we have kεξ(ξ1) < 0

and k+ ≤ kε(s) ≤ k−. Thus, for a sufficiently small positive number ε, one can
conclude that

k+ − k− ≤ k+ − kε(ξ1)

= kεξ(ξ1)

∫ +∞

ξ1

exp
(

∫ ξ

ξ1

−
s

ε
ds
)

dξ

= kεξ(ξ1)

∫ +∞

ξ1

exp
(

−
1

2ε
(ξ − ξ1)(ξ + ξ1)

)

dξ

= kεξ(ξ1)

∫ +∞

0

exp
(

−
1

2ε
ζ(ζ + 2ξ1)

)

dζ

≤ kεξ(ξ1) · εC1

in which the change of variables ζ = ξ− ξ1 has been used and C1 is a constant

independent of ε. Thus, we can get 0 > kεξ(ξ1) ≥
k+−k−
εC1

. Together with (3.20),
we arrive at

(3.22) 0 > kεξ(ξ) ≥
k+ − k−

εC1
· exp

(

∫ ξ

ξ1

−
s

ε
ds
)

.

Hence, we know that kεξ → 0 as ε→ 0 holds uniformly on ξ > ξα + η.
For any ξ > ξα + η, we have

(3.23) k+ − kε(ξ) =

∫ +∞

ξ

kεs(s)ds.

Obviously, we can draw the conclusion that limε→0+ k
ε(ξ) = k+ holds uniformly

on ξ > ξα + η in view of (3.22).
Next, let us prove that limε→0+ k

ε(ξ) = k− holds uniformly on ξ < ξα − η.
Similarly, it is easy to take ε > 0 sufficiently small such that ξεα > ξα − η

4 . If
we take ξ3 = ξα − η

2 , then we also have ξεα > ξ3 +
η
4 . By integrating (3.3) over

(ξ, ξ3), we have

(3.24) kεξ(ξ) = kεξ(ξ3) exp
(

∫ ξ

ξ3

−
s

ε
ds
)

.

Consequently, by integrating (3.22) over (−∞, ξ3) again, we also have

(3.25) kε(ξ3)− k− = kεξ(ξ3) ·

∫ ξ3

−∞

exp
(

∫ ξ

ξ3

−
s

ε
ds
)

dξ.

Thus, for a sufficiently small positive number ε, it yields

k+ − k− ≤ kε(ξ3)− k−

= kεξ(ξ3) ·

∫ ξ3

−∞

exp
(

∫ ξ

ξ3

−
s

ε
ds
)

dξ
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= kεξ(ξ3)

∫ ξ3

−∞

exp
(

−
1

2ε
(ξ − ξ1)(ξ + ξ1)

)

dξ

= kεξ(ξ3)

∫ 0

−∞

exp
(

−
1

2ε
ζ(ζ + 2ξ1)

)

dζ

≤ kεξ(ξ3) · εC2

in which the change of variables ζ = ξ − ξ3 has also been used and C2 is a

constant independent of ε. Thus, we have 0 > kεξ(ξ3) ≥
k+−k−
εC2

. Together with

(3.24), we also know that

(3.26) 0 > kεξ(ξ) ≥
k+ − k−

εC2
· exp

(

∫ ξ

ξ3

−
s

ε
ds
)

.

So, we can conclude that kεξ → 0 as ε→ 0 holds uniformly on ξ < ξα − η.
Thus, for any ξ < ξα − η, we have

(3.27) kε(ξ)− k− =

∫ ξ

−∞

kεs(s)ds.

Obviously, we can see that limε→0+ k
ε(ξ) = k− holds uniformly on ξ < ξα −

η. �

Lemma 3.4. Let ξα be defined as above. Then, in the case of k+ < 0 < k−,

we have

(3.28) ξα = 0.

Proof. Take any φ(ξ) ∈ C∞

0 (ξ1, ξ2) where ξ1 < ξα < ξ2. It follows from (3.3)
that

(3.29)
∫ ξ2

ξ1
εkξξ · φ(ξ)dξ =

∫ ξ2

ξ1
−ξkξ · φ(ξ)dξ.

By using integration by parts and applying the fact that φ is compactly support
in the interval (ξ1, ξ2), we have

(3.30)
∫ ξ2

ξ1
εkφξξ(ξ)dξ =

∫ ξ2

ξ1
k(ξφξ(ξ) + φ(ξ))dξ.

By taking the limit ε→ 0+ in (3.30), it can be obtained from Lemma 3.3 that

(3.31)
∫ ξα

ξ1
k−(ξφξ(ξ) + φ(ξ))dξ +

∫ ξ2

ξα
k+(ξφξ(ξ) + φ(ξ))dξ = 0.

Simplifying (3.31) leads to

(3.32) (k− − k+)ξαφ(ξα) = 0,

which enables us to have ξα = 0 for the arbitrary of φ(ξ). �

Lemma 3.5. For arbitrary η > 0, in the case of k+ < 0 < k−, we have that

(3.33) lim
ε→0+

uε(ξ) =

{

u− for ξ < ξα − η,

u+ for ξ > ξα + η,

holds uniformly in the above intervals.
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Proof. Let us suppose that u± > 0 without loss of generality, otherwise the
conclusion can be drawn similarly. Let us take ε > 0 sufficiently small, such
that we have |ξεα−ξα| < η/2. For any ξ1 ≤ ξα−η, we can also have ξ1 ≤ ξεα−η/2
for ε sufficiently small.

Integrating (3.5) over (−∞, ξ1) gives

(3.34) uε (ξ1) = u− exp
(

∫ ξ1

−∞

−kεs(s)

kε(s)− s
ds
)

.

For s ∈ (−∞, ξ1) and k+ < kε(s) < k−, there exists ξ2 ∈ (−∞, ξ1) such that

kε(s)− s ≥ kε(ξ1)− ξ1

= kε(ξ1)− ξ1 − kε(ξεα) + ξεα

= (1− kεs(ξ2))(ξ
ε
α − ξ1)

≥ η/2.

Thus, it can be derived from (3.34) that

(3.35) uε(ξ1) ≤ u− exp

∫ ξ1

−∞

−2kεs(s)

η
ds = u− exp

(2k− − 2kε(ξ1)

η

)

.

It can be seen from Lemma 3.3 that limε→0+ k
ε(ξ1) = k− holds uniformly

for ξ1 < ξα − η. Thus, we can see that uε(ξ) ≤ u− for any ξ < ξα − η. On the
other hand, it is obvious to see that uε(ξ) is monotonically increasing in the
interval (−∞, ξα), such that we have uε(ξ) ≥ u− for any ξ < ξα−η. Therefore,
we can conclude that limε→0+ u

ε(ξ) = u− holds uniformly for ξ < ξα − η.
Finally, for any ξ3 ≥ ξα + η, it is easy to see that ξ3 ≥ ξεα + η/2 holds for

sufficiently small ε > 0. Integrating (3.5) over (ξ3,+∞), we have

(3.36) uε (ξ3) = u+ exp
(

∫ +∞

ξ3

−kεs(s)

s− kε(s)
ds
)

.

Similarly, we also have s− kε(s) ≥ η/2 for s ∈ (ξ3,+∞). Thus, we have

(3.37) uε (ξ3) ≤ u+ exp

∫ +∞

ξ3

−2kεs(s)

η
ds = u+ exp

(2kε(ξ3)− 2k+
η

)

.

Obviously, we can conclude that limε→0+ k
ε(ξ3) = k+ holds uniformly for ξ3 ≥

ξα + η. Thus, it yields uε(ξ) ≤ u+ for any ξ ≥ ξα + η. On the other hand,
uε(ξ) is monotonically increasing in the interval (ξα,+∞), such that we have
uε(ξ) ≥ u+ for any ξ ≥ ξα + η. Therefore, the conclusion can be drawn that
limε→0+ u

ε(ξ) = u+ holds uniformly for ξ ≥ ξα + η. �

Theorem 3.6. Let (kε(ξ), uε(ξ)) be the solution of (3.1) and (3.2) for k+ <

0 < k− and given ε > 0. Then the limit of (kε(ξ), uε(ξ)) as ε → 0+ can be

expressed as (2.11) with (2.12) exactly, which is identical with the corresponding

Riemann solution of (1.2) and (1.3).
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Proof. Let us first investigate the limit ε → 0 behavior of uε(ξ) in the neigh-
borhood of ξ = 0. We take φ(ξ) ∈ C∞

0 (ξ1, ξ2) with ξ1 < 0 < ξ2 which should
satisfy φ(ξ) = φ(0) in the neighborhood of ξ = 0 such as N(µ) = [−µ, µ] for
sufficiently small µ > 0. We remark that it is called as the sloping test function
in [35].

It follows from (3.5) that
(3.38)
∫ ξ2

ξ1

(−ξuεξ + (kεuε)ξ)φ(ξ)dξ =

∫ ξ2

ξ1

uε(ξ − kε)φξ(ξ)dξ +

∫ ξ2

ξ1

uε(ξ)φ(ξ)dξ = 0.

Remembering that φ(ξ) = φ(0) when ξ ∈ N(µ), we have

lim
ε→0+

∫ ξ2

ξ1

uε(ξ − kε)φξ(ξ)dξ

=

∫

−µ

ξ1

u−(ξ − k−)φξ(ξ)dξ +

∫ ξ2

µ

u+(ξ − k+)φξ(ξ)dξ

= u− (−µ− k−)φ(−µ)− u−

∫

−µ

ξ1

φ(ξ)dξ − u+ (µ− k+)φ(µ) − u+

∫ ξ2

µ

φ(ξ)dξ.

By taking the limit µ→ 0 above, we have
(3.39)

lim
ε→0+

∫ ξ2

ξ1

uε(ξ − kε)φξ(ξ)dξ = [uk]φ(0)−

∫ ξ2

ξ1

(u−H(−ξ) + u+H(ξ))φ(ξ)dξ,

in which H denotes the Heaviside function.
It can be obtained by combining (3.38) and (3.39) together that

(3.40) lim
ε→0+

∫ ξ2

ξ1

(uε(ξ)− u−H(−ξ)− u+H(ξ))φ(ξ)dξ = −[uk]φ(0)

for all sloping test functions φ (ξ) ∈ C∞

0 [ξ1, ξ2]. Consequently, by taking the
limits ξ1 → 0− and ξ2 → 0+ in (3.40) at the same time, we can obtain that

(3.41) u(ξ) = lim
ε→0+

uε(ξ) = u−H(−ξ) + u+H(ξ)− [uk]δ(ξ).

Let us denote u0(ξ) = u−H(−ξ) + u+H(ξ) and then consider the limit of
uε(x, t). We need to look for the solution depending on the time t due to the
fact that it is no longer self-similar in the limit situation. Let ψ(x, t) = φ(x

t
) ∈

C∞

0 (R×R+), then we have

(3.42) lim
ε→0

∫

∞

0

∫

∞

−∞

uε(
x

t
)ψ(x, t)dxdt = lim

ε→0

∫

∞

0

t
(

∫

∞

−∞

uε(ξ)ψ(ξt, t)dξ
)

dt.

If t is taken as a parameter, then it follows from (3.40) and (3.42) that

(3.43) lim
ε→0

∫

∞

−∞

uε(ξ)ψ(ξt, t)dξ =

∫

∞

−∞

u0(ξ)ψ(ξt, t)dξ+(k−u−−k+u+)ψ(0, t).
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By substituting ξ = x
t
into (3.43) and noticing the fact that u0(

x
t
) = u0(x), we

may rewrite (3.43) as
(3.44)

lim
ε→0

∫

∞

0

∫

∞

−∞

(

uε(
x

t
)− u0(x)

)

ψ(x, t)dxdt =

∫

∞

0

(k−u− − k+u+)tψ(0, t)dt,

which implies that the limit ε → 0 of uε is identical with the corresponding
Riemann solution (2.11) with (2.12) for u exactly when k+ < 0 < k−.

In the end, let us consider the value of k(ξ) at the discontinuity point ξ = 0.
It is clear to see that (3.5) can be reformulated into the following form

(3.45)

∫ ξ2

ξ1

u(φ+ ξφξ − kφξ)dξ = 0.

By substituting (3.41) into (3.45), we can conclude that

(3.46)

∫ ξ2

ξ1

(u−H(−ξ) + u+H(ξ)− [uk]δ(ξ))(φ + ξφξ − kφξ)dξ = 0,

which enables us to have
(3.47)

0 =

∫ 0−

ξ1

(φ+ ξφξ − kφξ)dξ +

∫ ξ2

0+
(φ+ ξφξ − kφξ)dξ + [uk](φ(0)− k(0)φξ(0)).

Thus, we have

(3.48)
k−u−φ(0)− k+u+φ(0) + [uk](φ(0)− k(0)φξ(0))

= (k−u−φ(0)− k+u+)k(0)φξ(0) = 0,

which enables us to obtain k(0) = 0 for the arbitrariness of φ. �
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