• Title/Summary/Keyword: Riemann 문제

Search Result 31, Processing Time 0.025 seconds

Analysis of Shallow-Water Equations with HLLC Approximate Riemann Solver (HLLC Approximate Riemann Solver를 이용한 천수방정식 해석)

  • Kim, Dae-Hong;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.10
    • /
    • pp.845-855
    • /
    • 2004
  • The propagation and associated run-up process of nearshore tsunamis in the vicinity of shorelines have been analyzed by using a two-dimensional numerical model. The governing equations of the model are the nonlinear shallow-water equations. They are discretized explicitly by using a finite volume method and the numerical fluxes are reconstructed with a HLLC approximate Riemann solver and weighted averaged flux method. The model is applied to two problems; The first problem deals with water surface oscillations, while the second one simulates the propagation and subsequent run-up process of nearshore tsunamis. Predicted results have been compared to available analytical solutions and laboratory measurements. A very good agreement has been observed.

A Numerical Analysis of the Shallow Water Equations Using the HLLL Approximate Riemann Solver (HLLL 근사 Riemann 해법을 이용한 천수방정식의 수치해석)

  • Hwang, Seung-Yong;Lee, Sam-Hee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.148-148
    • /
    • 2011
  • Riemann 문제는 천수방정식과 같은 쌍곡선형 방정식과 단일한 도약에 의해 불연속인 어떤 점의 좌 우에서 상수인 자료로 구성되는 초기치 문제로서 그 해법은 Godunov 방법과 같이 정확해에 의하면 정확 Riemann 해법, 근사 기법에 의하면 근사 Riemann 해법으로 불린다. 지금까지 이용되는 근사 Riemann 해법으로는 1981년에 P. L. Roe가 제안한 Roe의 선형화 기법과 1983년에 A. Harten, P. D. Lax, 그리고 B. van Leer가 제안한 HLL 기법의 수정 기법들이다. 최대 및 최소 파속만 고려하는 것으로 알려진 HLL 기법은 1988년에 B. Einfeldt의 제안에 의해 두 파속의 결정에서 Roe의 선형화 기법에 따른 고유치와 비교하는 것으로 수정되었다(HLLE 기법). 또한, 1994년에 E. F. Toro 등은 접촉파를 고려하기 위해 선형화된 지배방정식의 정확해로부터 중앙 파속을 고려하는 기법을 제안하였고, 이를 HLLC 기법으로 불렀다. 2002년에 T. Linde는 중앙 파속을 평가하기 위해 일반화된(수학적) 엔트로피 함수를 도입하였으며, van Leer는 이를 HLLL 기법으로 불렀다. 이 기법에서는 접촉파의 평가를 위해 보존변수에 대한 일반화된 엔트로피 함수로부터 중앙 파속이 유도되며, 이것과 특성 속도의 비교를 통해 최대 및 최소 파속이 결정된다. 따라서 이 기법에서는 모든 파속이 초기치로부터 결정되므로 HLLE 기법과 달리 Roe의 선형화 기법과 완전히 결별되고 HLLC 기법과 달리 정확해에 의존되지 않는 점에서 HLLL 기법은 모태인 HLL 기법의 온전한 계승으로 볼 수 있다. HLLL 기법은 여러 분야에 적용된 바 있으나, 수공학 분야에 적용된 사례는 알려진 바 없다. 이는 천수방정식에 대한 (물리적) 엔트로피 함수가 명확하지 않기 때문인 것으로 보인다. 이 연구에서는 보존변수로부터 정의되는 총 에너지를 일반화된 엔트로피 함수로 간주하여 모형을 구성하고, 정확해가 알려진 1차원 문제에 대해 적용성을 검토하였다. 정확해가 알려진 경우에 대해 모의한 결과, 1차 정도 수치해의 한계에도 불구하고, HLLL 기법의 결과는 대체로 정확해와 잘 일치하였으며 그 외의 HLL-형 기법의 그것에 비해 우수한 것으로 나타났다. 특히, 물이 빠져 바닥이 드러나는 상태에 대한 접촉 파속의 추정에서 Riemann 불변량을 이용하는 HLLC 기법에 비해 물이 빠지는 전선을 더 정확하게 포착하는 HLLL 기법의 결과는 매우 고무적이었다.

  • PDF

Numerical Simulation for Shallow-water Flow with Wetting and Drying over Paraboloidal Topography (천수 흐름에 의한 포물면 지형의 잠김과 드러남에 대한 수치모의)

  • Hwang, Seung-Yong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.322-322
    • /
    • 2017
  • 천수 흐름에 대한 수치해석에서 매우 작은 수심의 발생은 해가 불안정해지는 주요 원인 중 하나이며, 경사면이 잠기고 드러나는 그 전선에서 그 현상은 더욱 두드러질 수 있다. 특히, 지배 방정식이 보존형으로 기술되는 경우, 흐름률이나 생성항의 계산에서 수심에 의한 나눗셈이 불가피하므로 보존변수를 정확하게 계산하는 것이 해의 안정성을 도모하기 위한 관건이 된다. 이러한 기대에 부응할 수 있는 수치해법으로 흐름률을 정확한 계산할 수 있는 Riemann 해법을 들 수 있다. 또한, 생성항을 정확하게 계산할 수 있도록 계산 격자를 적절하게 구성하고 그 격자가 완전히 잠기지 않을 경우에 대해 물리적으로 타당하게 처리할 필요가 있다. 이 연구에서는 흐름률의 계산에 근사 Riemann 해법을 적용하여 포물면 지형을 지나는 천수 흐름에 대해 모의하였다. 1981년에 W. C. Thacker는 회전 포물면 위의 천수 문제에 대해 천수방정식의 정확해를 처음으로 유도하였다. 이 문제는 지형의 잠김과 드러남이 다수의 계산 격자에서 지속적으로 이루어지기 때문에 천수흐름의 수치 모의에서 극도로 혹독한 조건의 시험으로 알려져 있다. 회전 포물면 위의 천수 문제에 대해 근사 Riemann 해법에 따른 자료의 재구축 방법, 잠김과 드러남의 처리 등에 대해 검토하였다.

  • PDF

EXACT RIEMANN SOLVER FOR THE AIR-WATER TWO-PHASE SHOCK TUBE PROBLEMS (공기-물 이상매질 충격파관 문제에 대한 정확한 Riemann 해법)

  • Yeom, G.S.;Chang, K.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.365-367
    • /
    • 2010
  • In this paper, we presented the exact Riemann solver for the air-water two-phase shock tube problems where the strength of the propagated sock wave is moderately weak. The shock tube has a diaphragm in the middle which separates water medium in the left and air medium in the right. By rupturing the diaphragm, various waves such as rarefaction wave, shock wave and contact discontinuity are propagated into water and air. Both fluids are treated as compressible, with the linearized equations of state. We used the isentropic relations for the air and water assuming a weak shock wave. We solved the shock tube problem considering a high pressure in the water and a low pressure in the air. The numerical results cleary showed a left-traveling rarefaction wave in the water, a right-traveling shock wave in the air, and the right-traveling material interface.

  • PDF

Weighted Averaged Flux Method for Computation of Shallow Water Equations (WAF 기법을 이용한 천수방정식 해석)

  • Kim, Woo-Gu;Jung, Kwan-Sue;Kim, Jae-Han
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.5
    • /
    • pp.777-785
    • /
    • 2003
  • A numerical model for the solution of two-dimensional free surface flow is developed on unstructured grid. By using fractional step method, the two-dimensional shallow water equations (SWE) are treated as two one-dimensional problems. Thus, it is possible to simulate computational hydraulic problems with higher computational efficiency. The one-dimensional problems are solved using upwind TVD version of second-order Weighted Averaged Flux (WAF) scheme with HLLC approximate Riemann solver. The numerical oscillations which are common with second-order numerical scheme are controlled by exploiting WAF flux limiter, Some idealized test problems are solved using this model and very accurate and stable solutions are obtained. It can be concluded as an efficient implement for the computation of SWE including dam break problems that concerning discontinuities, subcritical and supercritical flows and complex domain.

EXACT RIEMANN SOLVERS FOR COMPRESSIBLE TWO-PHASE SHOCK TUBE PROBLEMS (압축성 이상(二相) 충격파관 문제에 대한 엄밀 리만해법)

  • Yeom, Geum-Su;Chang, Keun-Shik
    • Journal of computational fluids engineering
    • /
    • v.15 no.3
    • /
    • pp.73-80
    • /
    • 2010
  • In this paper, we present the exact Riemann solver for the compressible liquid-gas two-phase shock tube problems. We hereby consider both isentropic and non-isentropic two-phase flows. The shock tube has a diaphragm in the mid-section which separates the liquid medium on the left and the gas medium on the right. By rupturing the diaphragm, various waves are observed on the phasic field variables such as pressure, density, temperature and void fraction in the form of rarefaction wave, shock wave and material interface (contact discontinuity). Both phases are treated as compressible fluids using the linearized equation of state or the stiffened-gas equation of state. We solve several shock tube problems made of a high/low pressure in the liquid and a low/high pressure in the gas. The wave propagations are well resolved by the exact Riemann solutions.

One-dimensional Hydraulic Modeling of Open Channel Flow Using the Riemann Approximate Solver I : Model Development (Riemann 해법을 이용한 1차원 개수로 수리해석Ⅰ: 모형 개발)

  • Kim, Ji-Sung;Han, Kun-Yeun
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.8
    • /
    • pp.761-772
    • /
    • 2008
  • The object of this study is to develop the model that solves the numerically difficult problems in hydraulic engineering and to demonstrate the applicability of this model by means of various test examples, such as, verification in the gradually varied unsteady condition, three steady flow problems with the change of bottom slope with exact solution, and frictional bed with analytical solution. The governing equation of this model is the integral form of the Saint-Venant equation satisfying the conservation laws, and finite volume method with the Riemann solver is used. The evaluation of the mass and momentum flux with the HLL Riemann approximate solver is executed. MUSCL-Hancock scheme is used to achieve the second order accuracy in space and time. This study introduce the new and simple technique to discretize the source terms of gravity and hydrostatic pressure force due to longitudinal width variation for the balance of quantity between nonlinear flux and source terms. The results show that the developed model's implementation is accurate, robust and highly stable in various flow conditions with source terms, and this model is reliable for one-dimensional applications in hydraulic engineering.

HIGH-SPEED FLOW PHENOMENA IN COMPRESSIBLE GAS-LIQUID TWO-PHASE MEDIA (압축성 기-액 이상매체중의 고속 유동현상)

  • Shin, Byeong-Rog
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.249-257
    • /
    • 2007
  • A high resolution numerical method aimed at solving gas-liquid two-phase flow is proposed and applied to gas-liquid two-phase shock tube problem. The present method employs a finite-difference 4th-order Runge-Kutta method and Roe's flux difference splitting approximation with the MUSCL TVD scheme. By applying the homogeneous equilibrium cavitation model, the present density-based numerical method permits simple treatment of the whole gas-liquid two-phase flow field, including wave propagation and large density changes. The speed of sound for gas-liquid two-phase media is derived on the basis of thermodynamic relations and compared with that by eigenvalues. By this method, a Riemann problem for Euler equations of one dimensional shock tube was computed. Numerical results such as detailed observations of shock and expansion wave propagations through the gas-liquid two-phase media and some data related to computational efficiency are made. Comparisons of predicted results and exact solutions are provided and discussed.

  • PDF

Migration from Compressible Code to Preconditioned Code (압축성 코드에서 예조건화 코드로의 이전)

  • Han, Sang-Hoon;Kim, Myeong-Ho;Choi, Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.183-195
    • /
    • 2007
  • Comprehensive mathematical comparison of numerical dissipation vector was made for a compressible and the preconditioned version Roe's Riemann solvers. Choi and Merkle type preconditioning method was selected from the investigation of the convergence characteristics of the various preconditioning methods for the flows over a two-dimensional bump. The investigation suggests a way of migration from a compressible code to a preconditioning code with a minor changes in Eigenvalues while maintaining the same code structure. Von Neumann stability condition and viscous Jacobian were considered additionally to improve the stability and accuracy for the viscous flow analysis. The developed code was validated through the applications to the standard validation problems.

GAS-LIQUID TWO-PHASE HOMOGENEOUS MODEL FOR CAVITATING FLOW (캐비테이션 유동해석을 위한 기-액 2상 국소균질 모델)

  • Shin, Byeong-Rog
    • Journal of computational fluids engineering
    • /
    • v.12 no.2
    • /
    • pp.53-62
    • /
    • 2007
  • A high resolution numerical method aimed at solving cavitating flow is proposed and applied to gas-liquid two-phase shock tube problem. The present method employs a finite-difference 4th-order Runge-Kutta method and Roe's flux difference splitting approximation with the MUSCL TVD scheme. By applying the homogeneous equilibrium cavitation model, the present density-based numerical method permits simple treatment of the whole gas-liquid two-phase flow field, including wave propagation and large density changes. The speed of sound for gas-liquid two-phase media is derived on the basis of thermodynamic relations and compared with that by eigenvalues. By this method, a Riemann problem for Euler equations of one dimensional shock tube was computed. Numerical results such as detailed observations of shock and expansion wave propagations through the gas-liquid two-phase media at isothermal condition and some data related to computational efficiency are made. Comparisons of predicted results and exact solutions are provided and discussed.