• Title/Summary/Keyword: Rhodobacter

Search Result 113, Processing Time 0.026 seconds

Cloning, Nucleotide Sequence and Expression of Gene Coding for Poly-3-hydroxybutyric Acid (PHB) Synthase of Rhodobacter sphaeroides 2.4.1

  • Kim, Ji-Hoe;Lee, Jeong-Kug
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.4
    • /
    • pp.229-236
    • /
    • 1997
  • A gene, $phbC_{2.4.1}$ encoding poly-3-hydroxybutyric acid (PHB) synthase of Rhodobacter sphaeroides 2.4.1 was cloned by employing heterologous expression in Escherichia coli. R. sphaeroides chromosomal DNA partially digested with MboI was cloned in pUC19 followed by mobilization into E. coli harbouring $phbA,B_{AC}$ in pRK415, which code for ${\beta}$-ketothiolase and acetoacetyl CoA reductase of Alcaligenes eutrophus, respectively. Two E. coli clones carrying R. sphaeroides chromosomal fragment of $phbC_{2.4.1}$ in pUC19 were selected from ca. 10,000 colonies. The PHB-producing colonies had an opaque white appearance due to the intracellular accumulation of PHB. The structure of PHB produced by the recombinant E. coli as well as from R. sphaeroides 2.4.1 was confirmed by [$H^{+}$]-nuclear magnetic resonance (NMR) spectroscopy. Restriction analysis of the two pUC19 clones revealed that one insert DNA fragment is contained as a part of the other cloned fragment. An open reading frame of 601 amino acids of $phbC_{2.4.1}$ with approximate M.W. of 66 kDa was found from nucleotide sequence determination of the 2.8-kb SaiI-PstI restriction endonuclease fragment which had been narrowed down to support PHB synthesis through heterologous expression in the E. coli harbouring $phbA,B_{AC}$. The promoter (s) of the $phbC_{2.4.1}$ were localized within a 340-bp DNA region upstream of the $phbC_{2.4.1}$ start codon according to heterologous expression analysis.

  • PDF

The Photoheterotrophic Growth of Bacteriochlorophyll Synthase-Deficient Mutant of Rhodobacter sphaeroides Is Restored by I44F Mutant Chlorophyll Synthase of Synechocystis sp. PCC 6803

  • Kim, Eui-Jin;Kim, Hyeonjun;Lee, Jeong K.
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.5
    • /
    • pp.959-966
    • /
    • 2016
  • Chlorophyll synthase (ChlG) and bacteriochlorophyll synthase (BchG) have a high degree of substrate specificity. The BchG mutant of Rhodobacter sphaeroides, BG1 strain, is photosynthetically incompetent. When BG1 harboring chlG of Synechocystis sp. PCC 6803 was cultured photoheterotrophically, colonies arose at a frequency of approximately 10-8. All the suppressor mutants were determined to have the same mutational change, ChlGI44F. The mutated enzyme ChlGI44F showed BchG activity. Remarkably, BchGF28I, which has the substitution of F at the corresponding 28th residue to I, showed ChlG activity. The Km values of ChlGI44F and BchGF28I for their original substrates, chlorophyllide (Chlide) a and bacteriochlorophyllide (Bchlide) a, respectively, were not affected by the mutations, but the Km values of ChlGI44F and BchGF28I for the new substrates Bchlide a and Chlide a, respectively, were more than 10-fold larger than those for their original substrates, suggesting the lower affinities for new substrates. Taken together, I44 and F28 are important for the substrate specificities of ChlG and BchG, respectively. The BchG activity of ChlGI44F and the ChlG activity of BchGF28I further suggest that ChlG and BchG are evolutionarily related enzymes.

Skin Anti-Aging Activities of Bacteriochlorophyll a from Photosynthetic Bacteria, Rhodobacter sphaeroides

  • Kim, Nam Young;Yim, Tae Bin;Lee, Hyeon Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.10
    • /
    • pp.1589-1598
    • /
    • 2015
  • In this work, the anti-aging skin effects of bacteriochlorophyll a isolated from Rhodobacter sphaeroides are first reported, with notably low cytotoxicity in the range of 1% to 14% in adding 0.00078 (% (w/w)) of the extracts, compared with the normal growth of both human dermal fibroblast and keratinocyte cells without any treatment as a control. The highest production of procollagen from human fibroblast cells (CCD-986sk) was observed as 221.7 ng/ml with 0.001 (% (w/w)) of bacteriochlorophyll a, whereas 150 and 200 ng/ml of procollagen production resulted from addition of 0.001 (% (w/w)) of the photosynthetic bacteria. The bacteriochlorophyll-a-induced TNF-α production increased to 63.8%, which was lower secretion from HaCaT cells than that from addition of 0.00005 (% (w/w)) of bacteriochlorophyll a. Additionally, bacteriochlorophyll a upregulated the expression of genes related to skin anti-aging (i.e., keratin 10, involucrin, transglutaminase-1, and MMPs), by up to 4-15 times those of the control. However, crude extracts from R. sphaeroides did not enhance the expression level of these genes. Bacteriochlorophyll a showed higher antioxidant activity of 63.8% in DPPH free radical scavenging than those of water, ethanol, and 70% ethanol extracts (14.0%, 57.2%, and 12.6%, respectively). It was also shown that the high antioxidant activity could be attributed to the skin anti-aging effect of bacteriochlorophyll a, although R. sphaeroides itself would not exhibit significant anti-aging activities.

Genes of Rhodobacter sphaeroides 2.4.1 Regulated by Innate Quorum-Sensing Signal, 7,8-cis-N-(Tetradecenoyl) Homoserine Lactone

  • Hwang, Won;Lee, Ko-Eun;Lee, Jeong-Kug;Park, Byoung-Chul;Kim, Kun-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.219-227
    • /
    • 2008
  • The free-living photoheterotrophic Gram-negative bacterium Rhodobacter sphaeroides possesses a quorum-sensing (QS) regulatory system mediated by CerR-CerI, a member of the LuxR-LuxI family. To identify the genes affected by the regulatory system, random lacZ fusions were generated in the genome of R. sphaeroides strain 2.4.1 using a promoter-trapping vector, pSG2. About 20,000 clones were screened and 23 showed a significantly different level of ${\beta}$-gal activities upon the addition of synthetic 7,8-cis-N-tetradecenoyl-homoserine lactone (RAI). Among these 23 clones, the clone showing the highest level of induction was selected for further study, where about a ten-fold increase of ${\beta}$-gal activity was exhibited in the presence of RAI and induction was shown to be required for cerR. In this clone, the lacZ reporter was inserted in a putative gene that exhibited a low homology with catD. A genetic analysis showed that the expression of the catD homolog was initiated from a promoter of another gene present upstream of the catD. This upstream gene showed a strong homology with luxR and hence was named qsrR (quorum-sensing regulation regulator). A comparison of the total protein expression profiles for the wild-type cells and qsrR-null mutant cells using two-dimensional gel electrophoresis and a MALDI-TOF analysis allowed the identification of sets of genes modulated by the luxR homolog.

Effect of Changes in the Composition of Cellular Fatty Acids on Membrane Fluidity of Rhodobacter sphaeroides

  • Kim, Eui-Jin;Lee, Jeong K.
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.2
    • /
    • pp.162-173
    • /
    • 2015
  • The cellular fatty acid composition is important for metabolic plasticity in Rhodobacter sphaeroides. We explored the effects of changing the cellular ratio of unsaturated fatty acids (UFAs) to saturated fatty acids (SFAs) in R. sphaeroides by overexpressing several key fatty acid biosynthetic enzymes through the use of expression plasmid pRK415. Bacteria containing the plasmid pRKfabI1 with the fabI1 gene that encodes enoyl-acyl carrier protein (ACP) reductase showed a reduction in the cellular UFA to SFA ratio from 4 (80% UFA) to 2 (65% UFA) and had decreased membrane fluidity and reduced cell growth. Additionally, the ratio of UFA to SFA of the chromatophore vesicles from pRKfabI1-containing cells was similarly lowered, and the cell had decreased levels of light-harvesting complexes, but no change in intracytoplasmic membrane (ICM) content or photosynthetic (PS) gene expression. Both inhibition of enoyl-ACP reductase with diazaborine and addition of exogenous UFA restored membrane fluidity, cell growth, and the UFA to SFA ratio to wild-type levels in this strain. R. sphaeroides containing the pRKfabB plasmid with the fabB gene that encodes the enzyme β-ketoacyl-ACP synthase I exhibited an increased UFA to SFA ratio from 4 (80% UFA) to 9 (90% UFA), but showed no change in membrane fluidity or growth rate relative to control cells. Thus, membrane fluidity in R. sphaeroides remains fairly unchanged when membrane UFA levels are between 80% and 90%, whereas membrane fluidity, cell growth, and cellular composition are affected when UFA levels are below 80%.

Role of OrfQ in Formation of Light-Harvesting Complex of Rhodobacter sphaeroides under Light-Limiting Photoheterotrophic Conditions

  • LIM, SOO-KYONG;IL HAN LEE;KUN-SOO KIM;JEONG KUG LEE
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.5
    • /
    • pp.604-612
    • /
    • 1999
  • A puc-deleted cell of Rhodobacter sphaeroides grows with a doubling time longer than 160 h under light-limiting photoheterotrophic (3 Watts [W]/㎡) conditions due to an absence of the peripheral light-harvesting B800-850 complex. A spontaneous fast-growing mutant, R. sphaeroides SK101, was isolated from the puc-deleted cells cultured photoheterotrophically at 3 W/㎡. This mutant grew with an approximately 40-h doubling time. The growth of the mutant, however, was indistinguishable from its parental strain during photoheterotrophic growth at 10 W/㎡ as well as during aerobic growth. The membrane of SK101 grown aerobically did not reveal the presence of any spectral complex, while the amounts of the B875 complex and photosynthetic pigments of SK101 grown anaerobiclly in the dark with dimethylsulfoxide (DMSO) were the same as those of the parental cell. These results indicate that the oxygen control of the photosynthetic complex formation remained unaltered in the mutant. The B875 complex of SK101 under light-limiting conditions was elevated by 20% to 30% compared with that of the parental cell, which reflected the parallel increase of the bacteriochlorophyll and carotenoid contents of the mutant. When the puc was restored in SK101, the B875 complex level remained unchanged, but that of the B800-850 complex increased. The mutated phenotype of SK101 was complemented with orfQ encoding a putative bacteriochlorophyll-mobilizing protein. Accordingly, it is proposed that the mutated OrfQ of SK101 should have an altered affinity towards the assembly factor specific to the most peripheral light-harvesting complex, which could be either the B875 or the B800-850 complex.

  • PDF

Hypocholesterolemic Response to Karaya Saponin and Rhodobacter capsulatus in Broiler Chickens

  • Afrose, Sadia;Hossain, Md. Sharoare;Maki, Takaaki;Tsujii, Hirotada
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.6
    • /
    • pp.733-741
    • /
    • 2010
  • Dietary karaya saponin and Rhodobacter capsulatus (R. capsulatus) are known to have hypocholesterolemic actions, as reported in our previous studies. This study examined possible synergistic hypocholesterolemic effects of karaya saponin and R. capsulatus in broilers. A total of 150 broilers were allocated into 10 treatments: control, saponin 25 mg, saponin 50 mg, saponin 75 mg, saponin 25 mg+R. capsulatus 0.2 g, saponin 25 mg+R. capsulatus 0.4 g, saponin 50 mg+R. capsulatus 0.2 g, saponin 50 mg+R. capsulatus 0.4 g, saponin 75 mg+R. capsulatus 0.2 g and saponin 75 mg+R. capsulatus 0.4 g. Feed intake and feed efficiency were improved when karaya saponin and R. capsulatus were synergistically supplemented in the diet. Combinations of karaya saponin, especially supplementation of karaya saponin 50 mg+R. capsulatus 0.4 g were shown to have potential hypolipidemic actions in breast and thigh muscle cholesterol and triglycerides, serum cholesterol, low density lipoprotein-cholesterol and triglycerides, as well as improved high density lipoprotein (HDL)-cholesterol (p<0.05). Compared to the control, almost all the treatments significantly increased serum, liver and fecal concentrations of bile acids (p<0.05). Supplementation of both karaya saponin (75 mg) and saponin 50 mg+R. capsulatus 0.4 g reduced palmitic acid (C16:0) and stearic acid (C18:0) in a similar fashion (p<0.05). The ratios of PUFA:SFA or PUFA+MUFA:SFA in the thigh and breast muscle of broilers were greater in karaya saponin and R. capsulatus supplemented groups than in the control group. Thus, our study concluded that supplementation of karaya saponin synergistically with R. capsulatus in the diet of broilers is an effective way to obtain low-cholesterol, low-triglyceride and high HDL-cholesterol enriched poultry meat with a unique fatty acid balance.

Mass Cultivation and Secondary Metabolite Analysis of Rhodobacter capsulatus PS-2 (광합성세균 Rhodobater capsulatus PS-2의 대량배양 최적화 및 대사산물 분석)

  • Bong, Ki Moon;Kim, Jong Min;Yoo, Jae-Hong;Park, In Chul;Lee, Chul Won;Kim, Pyoung Il
    • KSBB Journal
    • /
    • v.31 no.3
    • /
    • pp.158-164
    • /
    • 2016
  • Plant growth promoting (PGP) hormones, which are produced in a small quantity by bacteria, affect in plant growth and development. PGPs play an important role on the crop productivity in agricultural field. In this study, a photosynthetic bacterial strain producing the PGP was isolated from paddy soil. Bacterial isolate was gram negative, rod-shaped and motility positive. From the 16s rRNA gene sequence analysis, the isolate was identified as Rhodobacter capsulatus PS-2. The mass cultivation of R. capsulatus PS-2 was optimized by considering of the carbon, nitrogen and inorganic salt sources. Optimal medium composition was determined as Na-succinate 4.5 g, yeast extract 5 g, $K_2HPO_4$ 1 g, $MgSO_4$ 5 g, per liter. From the result of 500 L fermentation for 2 days using the optimal medium, the viable cells were $8.7{\times}10^9cfu/mL$. R. capsulatus PS-2 strain produced the carotenoid and indole-3-acetic acid (IAA). The carotenoid extraction and quantitative analysis were performed by HCl-assisting method. Total carotenoid contents from R. capsulatus PS-2 culture broth were measured as $7.02{\pm}0.04$ and $6.93{\pm}0.05mg/L$ under photoheterotrophic and chemoheterotrophic conditions, respectively. To measure the productivity of IAA, colorimetric method was employed using Salkowski reagent at optical density 535 nm. The results showed that the highest content of IAA was $197.44{\pm}5.92mg/L$ in the optimal medium supplemented with 0.3% tryptophan.

Isolation and Some Cultural Characteristics of ${\delta}-Aminolevulinic$ Acid - Producing Photosynthetic Bacteria (${\delta}-Aminolevulinic$ Acid 생산 광합성세균의 분리 및 배양특성)

  • Cheong, Dae-Yeol;Choi, Yang-Mun;Yang, Han-Chul;Cho, Hong-Yon
    • Applied Biological Chemistry
    • /
    • v.40 no.6
    • /
    • pp.561-566
    • /
    • 1997
  • Screening, Identification and some cultural characteristics of ALA$({\delta}-aminolevulinic\;acid)$-producing photosynthetic bacteria were carried out for the optimal production of ALA, one of the bioherbicides. Among photosynthetic bacteria isolated from soil, marsh, pond, etc., KK-10 was the best producer of ALA and identified to be Rhodobacter capsulatus belonging to a typical group of nonsulfur purple bacteria. By addition of 15 mM LA (levulinic acid), an inhibitor of ALA dehydrase in cyclic tetrapyrrole biosynthesis, into culture broth at middle log phase of cell growths, ALA production was considerably increased to about 20-fold (28 mg/l). The combined supplementation of glycine and succinate, each with a concentration of 30 mM also enhanced production of ALA and activity of ALA synthase to about 50-fold (73 mg/l) and 2-fold, respectively. The isolated strain was able to produce upto 80 mg/l under the cultural condition optimized by addition 15 mM LA into the synthetic medium at four different points starting middle log phase.

  • PDF

Effects of pH and Carbon Sources on Biohydrogen Production by Co-Culture of Clostridium butyricum and Rhodobacter sphaeroides

  • Lee, Jung-Yeol;Chen, Xue-Jiao;Lee, Eun-Jung;Min, Kyung-Sok
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.3
    • /
    • pp.400-406
    • /
    • 2012
  • To improve the hydrogen yield from biological fermentation of organic wastewater, a co-culture system of dark- and photo-fermentation bacteria was investigated. In a pure-culture system of the dark-fermentation bacterium Clostridium butyricum, a pH of 6.25 was found to be optimal, resulting in a hydrogen production rate of 18.7 ml-$H_2/l/h$. On the other hand, the photosynthetic bacterium Rhodobacter sphaeroides could produce the most hydrogen at 1.81mol-$H_2/mol$-glucose at pH 7.0. The maximum specific growth rate of R. sphaeroides was determined to be 2.93 $h^{-1}$ when acetic acid was used as the carbon source, a result that was significantly higher than that obtained using either glucose or a mixture of volatile fatty acids (VFAs). Acetic acid best supported R. sphaeroides cell growth but not hydrogen production. In the co-culture system with glucose, hydrogen could be steadily produced without any lag phase. There were distinguishable inflection points in a plot of accumulated hydrogen over time, resulting from the dynamic production or consumption of VFAs by the interaction between the dark- and photo-fermentation bacteria. Lastly, the hydrogen production rate of a repeated fed-batch run was 15.9 ml-$H_2/l/h$, which was achievable in a sustainable manner.