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Cloning, Nucleotide Sequence and Expression of Gene
Coding for Poly-3-hydroxybutyric Acid (PHB)
Synthase of Rhodobacter sphaeroides 2.4.1
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A gene, phbC,,, encoding poly-3-hydroxybutyric acid (PHB) synthase of Rhodobacter sphaeroides 2.
4.1 was cloned by employing heterologous expression in Escherichia coli. R. sphaeroides chromosomal
DNA partially digested with Mbol was cloned in pUC19 followed by mobilization into E. coli har-
bouring phbA,B,. in pRK415, which code for B-ketothiolase and acetoacetyl CoA reductase of Al-
caligenes eutrophus, respectively. Two E. coli clones carrying R. sphaeroides chromosomal fragment of
phbC,,, in pUCI9 were selected from ca. 10,000 colonies. The PHB-producing colonies had an opaque
white appearance due to the intracellular accumulation of PHB. The structure of PHB produced by the re-
combinant E. coli as well as from R. sphaeroides 2.4.1 was confirmed by [H']-nuclear magnetic reso-
nance (NMR) spectroscopy. Restriction analysis of the two pUC19 clones revealed that one insert DNA
fragment is contained as a part of the other cloned fragment. An open reading frame of 601 amino acids
of phbC,,, with approximate M.W. of 66 kDa was found from nucleotide sequence determination of the
2.8-kb Sall-Pst] restriction endonuclease fragment which had been narrowed down to support PHB syn-
thesis through heterologous expression in the E. coli harbouring phbA,B,c. The promoter (s) of the phbC,,,
were localized within a 340-bp DNA region upstream of the phbC,,, start codon according to het-

erologous expression analysis.

Poly-3-hydroxybutyric acid (PHB), a homopolymer of
3-hydroxybutyric acid accumulates intracelluarly when
optimal growth conditions are not met in both gram-po-
sitive and gram-negative bacteria (for a review, see ref.
2). The PHB functions as a carbon storage compound or
as a sink for reducing equivalents. The PHB belongs to
polyhydroxyalkanoic acids (PHAs) which are polyesters
of varoius 3-, 4-, and 5-hydroxyalkanoic acids. The ther-
moplastic properties of some of the PHAs have attracted
industrial interest as a biodegradable plastic.

Although many research works have focused on in-
creasing the PHB-production yield using a variety of bac-
terial strains (a few illustrated with ref. 15, 17, 18, 21,
and 38), biosynthesis of PHB has been studied in most
detail in Alcaligenes eutrophus. In this bacterium three
enzymes of the PHB biosynthetic pathway are organized
PphbC-A-B with an operon coding for PHB synthase, -
ketothiolase, and acetoacetyl-CoA reductase, respec-
tively. The B-ketothiolase condenses two acetyl-CoAs to
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form acetoacetyl-CoA which is subsequently reduced to
D-(-)-3-hydroxybutyryl-CoA by a NADPH-dependent
acetoacetyl-CoA reductase. Next, the PHB is produced
by polymerization of the D-(-)-3-hydroxybutyryl-CoA
by PHB synthase (24, 25). In Rhodospirillum rubrum,
however, L-~(+)-3-hydroxybutyryl CoA is formed first
and converted to D-(-)-3-hydroxybutyryl-CoA by the ac-
tion of both L-(+)- and D-(-)- enoyl-CoA hydratases (23).

Genes for PHB biosynthesis have been cloned and
characterized from several bacteria (8, 22, 24-26, 30, 33,
35, 36). Recently, Hustede and Steinbiichel isolated and
sequenced phbC of R. sphaeroides ATCC 17023 (9).
However, not much is known about phbC expression at
the level of genetic regulation. As an initial attempt to
understand phbC expression in photosynthetic bacterium,
we cloned and sequenced phbC (phbC,.,) of R.
sphaeroide 2.4.1 which has been commonly used as a
model organism in which to study the molecular genetic
regulation of the genes relevant for photosynthetic com-
plexes and photosynthetic membrane development (14,
19). In addition, the DNA region containing promoter(s)
of phbC,,, were localized by employing heterologous ex-
pression in E. coli.
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MATERIALS AND METHODS

Bacteria, Plasmids and Cell Growth

The bacterial strains and plasmids used in this study
are described in Table 1. Rhodobacter sphaeroides 2.4.1
was grown at 28°C in Sistrom's minimal medium (31).
Escherichia coli strains were grown at 37°C in Luria
medium (28). For PHB synthesis by recombinant E. cofi
Luria medium containing 2% glucose was used (20). Am-
picillin, tetracycline, streptomycin, and spectinomycin
(final concentrations, 50, 10, 50, and 50 ug/ml, respec-
tively) were added to the growth medium for E. coli car-
rying plasmids encoding these drug resistance genes.

DNA Manipulation and Sequence Analysis

Large- and small-scale plasmid DNA were prepared as
previously described (13, 28). DNA was treated with re-
striction enzymes and other nucleic acid-modifying
enzymes in accordance with the manufacturers’ in-
structions. DNA fragments were analyzed on agarose
gels or polyacrylamide gels, and restriction fragments
were isolated as described previously (3).

For sequence determination subclones were prepared
on pUC19 and pUC18. These clones were used to de-
termine the DNA sequence of phbC (phbC,,,) of R
sphaeroides 2.4.1. The dideoxy-nucleotide sequencing
reactions (29) were carried out with double-stranded

Table 1. Bacterial strains and plastmids.
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DNA using T7 DNA polymerase of Cy5™ AutoRead™
Sequencing Kit (Pharmacia Biotech, Uppsala, Sweden).
The universal primer (5'-CGACGTTGTAAAACGACG-
GCCAGT-3") labelled with Cy5 at its 5'-end was used.
Sequence determination was performed with an ALF ex-
press automatic DNA Sequencer (Pharmacia Biotech) at
the Molecular Microbiology Center in Seoul National
University.

Determined nucleotide sequence was assembled and
analyzed using the DNASIS program (Version 7.0) of
Promega, WI, U.S.A. Nucleotide sequence comparisons
with the GenBank, GenEMBL, DDBJ and PDB data-
banks were made using the BLAST program of NCBI,
US.A.

Southern Hybridization

R. sphaeroides chromosomal DNA was digested to
completion with appropriate restriction enzymes and
electrophoresed on 0.8% agarose gels. Southern blots to
Hybond-N membrane (Amersham, U.K.) were performed
as previously described (4). Probes were prepared by using
a Fluorescein Gene Images Ilabelling and detection kit
(Amersham, UK.). Hybrdization with the fluorescein-la-
belled probes and washing of the membranes were carried
out according to the instructions included with the kit.

Determination of PHB

Determination of PHB was performed by spectro-

Strain or plasmid

Relevant characteristic(s)

Source or reference

E. coli DH50phe

F ®80dlacZAM15A(lacZYA-argFyU169 recAl endAl 6

hsdR17(ry mg )supE44 A thi-1 gyrA relAl phe:: Tnl0dCm

R. sphaeroides 241 Wild type W. R. Sistrom
Plasmids pUC19 Ap' 37

pRK415 Tc 12

pTZ18U-PHB  A. eutrophus phbC,A,B in pTZ18U; Ap’ S. Kaplan

pSU102 pUCI19/HindIll and Hincll, 2.9-kb Hindlll-Stul fragment of this study
A. eutrophus phbC (+)*; Ap'

pDH100 pRK415/Hindll and EcoRl, 2.6-kb HindIlI-EcoRI fragment of this study
A. eutrophus phbA,B (+)*; Tc'

pJH1700 pUC19/BamHI, 4.0-kb fragment containing phbC,,, of this study
R. sphaeroides 2.4.1 (+); Ap'

pJH2600 pUC19/BamHI, 6.0-kb fragment containing phbC,,, of this study
R. sphaeroides 2.4.1 (-); Ap’

pJH1701 pUC19/EcoR], 1.8-kb fragment containing carboxy portion of phbC,s; (+); Ap' this study

pJH1702 pJH1700 derivative, deletion of 1.5-kb Smal fragment (+); Ap’ this study

pJH1703 pJH1700 derivative, deletion of 1.65-kb Smul fragment (+); Ap’ this study

pJH1704 pIH1700 derivative, deletion of 1.3-kb Sall fragment (+); Ap’ this study

pJH1705 pJH1704 derivative, deletion of 0.8-kb BamHI-Smal fragment (+); Ap’ this study

pCP100 pJH1704 derivative, deletion of 283-bp Sall-Psfl fragment (+); AP' this study

pOH1704 pJH1704/HindIll, 2.0-kb Q cartridge; Ap’, Sm'/Sp’ this study

pOH1703 pJH1703/Hindlll, 2.0-kb Q cartridge; Ap’, Sm'/Sp’ this study

pOH100 pCP100/Hindlll, 2.0-kb  cartridge; Ap, Sm'/Sp’ this study

*The transcriptional orientation of the inserted DNA fragment is indicated as being either the same as that of the lac promoter (+) or opposite to that of

the lac promoter (-).
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photometric assay using the Law and Slepecky method
(16). Cultured cells (2 ml) were centrifuged and re-
suspended in 2 ml of 5% hypochlorite. After 1 h at 37°C,
PHB granules were centrifuged and washed sequentially
with water, acetone, and alcohol. The washed polymer
was dissolved in chloroform at 60°C and the chloroform
was evaporated in a boiling water bath. Next, 2 ml of
conc. H,SO, was added and the mixture was heated for
10 min in a boiling water bath to convert the polymer to
crotonic acid. The solution was cooled, and the ab-
sorbance between 215 and 255 nm measured against
conc. H,SO, as a blank. The relative amount of PHB
between the culture samples was quantitated from the ab-
sorbance of crotonic acid at 235 nm divided by the ab-
sorbance of the culture at 600 nm.

Nuclear Magnetic Resonance (NMR) Spectroscopy

[H']-NMR analysis of the PHB samples was carried
out on a Bruker AMX-500 spectrometer in the pulse
Fourier transform (FT) mode. The 500 MHz [H']-NMR
spectra were recorded at 25°C using CDCl, solutions of
the PHB (5 mg/ml) with 4.0-s pulse repetition, 5000-Hz
spectral width, 32 K data points and 16 accumulations
(11, 32).

RESULTS AND DISCUSSION

Cloning of Gene for PHB Synthase

Several trials to hybridize the chromosomal DNA of
Rhodobacter sphaeroides 2.4.1 with Alcaligenes eutrophus
phbC (phbC,) failed to result in any discrete signal (data
not shown). As another approach to cloning phbC (phbC,,,)
of R. sphaeroides, heterologus expression of the R
sphaeroides gene(s) in Escherichia coli was employed. For
this, a genetic background to support the formation of D-(-)-
3-hydroxybutyryl-CoA from acetyl CoA was provided in E.
coli by using phbA,B, coding for B-ketothiolase and aceto-
acetyl-CoA reductase of A. eutrophus, respectively (24, 25).
The idea behind this genetic background was to prvide for
easier screening of the recombinant E. coli carrying clone
(s) of phbC,,,. Because D-(-)-3-hydroxybutyryl-CoA is the
immediate substrate of poly-3-hydroxybutyric acid (PHB)
synthase, presence of phbC coding for the enzyme in the

Table 2. The PHB accumulation in E. coli.
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2 Acetyl CoAs

Acetoacetyl CoA

pRK4IS
{incP1)

UCI  \phdGras
N
(ColED) kN
PHB synthase of R. sphaeroides 24.1

PHB D-(-)-3~Hydroxybutyryl CoA
(opaque white appearance of colony)

Fig. 1. Strategy for cloning of PHB synthase gene (phbCiq,)
of R. sphaeroides 2.4.1.

The phbAac and phbB,c denote the phbA and phbB genes of A. eu-
trophus, respectively.

same E. coli cell should result in the accumulation of PHB
leading to an opaque white appearance of the colonies
(Fig. 1). Two plasmids of compatible groups were stably
maintained in E. coli using two different antibiotics relevant
to antibiotic resistance determinants carried in each of the
two plasmids. One plasmid with IncP1 incompatibility was
pRK415 (12) or its recombinant derivative, while the other
plasmid harboured a ColEl replicon of pUC19 (37) in
which cloning of R. sphaeroides chromosomal DNA had
been perfrmed. Two plasmids used to test the feasibility of
this method were pDH100 and pSU102. The pDH100 con-
tains phbA,B,. in the same orientation as the promoters of
lac and tet of the plasmid pRK415, while pSU102 carries
phbC, in pUCI9 in the same orientation as the lac pro-
moter. As shown in Table 2, E. coli containing both pDH
100 and pSU102 produced PHB sufficiently well to tum
the colony appearance opaque white in 2 or 3 days on Lu-
ria-glucose plate. Neither . coli (pDH100, pUC19) nor E.
coli (pRK415, pSU102) accumulated any PHB to form
opaque white colonies as expected. No PHB frmation was
observed in the E. coli (pRK415, pUC19), either.

The R. sphaeroides chromosome partially digested
with Mbol restriction endonuclease was ligated into the
BamH]1 site of pUC19. Next, the ligation mixture was
mobilized into E. coli containing pDH100. Two E. coli

Colony appearance of

Plasmids® Relevant markers Detection of PHB® the recombinant E. coli
pDH100 + pJH1700 PhbA,B,c and phbC,,, + opaque white
pDH100 + pJH2600 phbA,B,c and phbC,,, + 1
pDH100 + pSU102 PhbA,Bsc and phbC + "
pDH100 + pUC19 PhbA,Bac - clear
pRK415 + pSU102 PhbCac - G
pRK415 + pUC19 - ”

*E. coli strains harbouring the two plasmids were grown at 37°C in Luria medium containing 2% glucose and appropriate antibiotics. "PHB was det-
ermined by the Law and Slepecky method (16). +, PHB detected; -, PHB not detected.
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colonies were selected according to their opaque white confirmed by the Law and Slepecky method (16) as
appearance from ca. 10,000 colonies examined. The two shown in Table 2.

pUCI9 clones were pJH1700 and pJH2600. PHB for- [H'}-Nuclear Magnetic Resonance (NMR) Analysis
mation by the two recombinant E. coli strains was also To ensure that the polymer detected by the Law and
A.

y ,

— [ —
13.07 (X
€740 E X"

Fig. 2. [H']-NMR profiles of PHB isolated from R. sphaeroides 2.4.1 and E. coli (pDH100, pJH1700).
(A) PHB from R. sphaeroides 2.4.1, (B) PHB from E. coli (pDH100, pJH1700).
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Slepecky method was a homopolymer of 3-hydroxy-
butyric acid, that is PHB, polymers extracted from R.
sphaeroides 2.4.1 and E. coli (pDH100 and pJH1700)
were analyzed by [H']-NMR analysis. As shown in Fig.
2, both [H']-NMR profiles of the polymers extracted
from R. sphaeroides 2.4.1 (Fig. 2A) and E. coli (pDH100
and pJH1700) (Fig. 2B) showed patterns of peaks typical
of PHB (11). Therefore, R. sphaeroides 2.4.1 produced
PHB under the growth conditions employed in this work,
and the clones of pJH1700 should carry the gene(s) of
PHB synthase responsible for the formation of PHB in
the E. coli containing pDH100.

Since the DNA fragment inserted in pJH2600 contains
the whole insert fragment of the pJH1700 (see below
and Fig. 3), [H']-NMR analysis was not performed on
the E. coli (pDH100, pJH2600).

Localization of phbC,,,

The DNA fragments inserted in pfH1700 and pJH2600
were approximately 4.0 and 6.0 kb, respectively. Res-
triction analysis of the two DNA fragments revealed that
the 4.0-kb DNA of pJH1700 is in apprximately the same
region as two thirds of the 6.0-kb DNA in pJH2600 and
shares one of the two ends generated by the partial diges-
tion with the Mbol restriction endonuclease used for clon-
ing (Fig. 3). The relative orientation of the inserted DNA
fragments in pJH1700 and pJH2600 to the plasmid lac
promters, however, was different in each case. But the
amount of PHB produced by E. coli (pDH100 and pJH
1700) did not differ much from that of E. coli (pDH100
and pJH2600). Thercfore, the expression of phbC,,,
seems to be mediated by its own promter(s) in E. coli.

Further localization of the phbC,,, was performed
with the 4.0-kb DNA fragment in pJH1700. Five sub-
clones of the 4.0-kb insert DNA in pJH1700 were con-

the

£ [S 5 E B8R S F R SE PS 8 PEw
E: B
——
T - PYH1700
S E B8RS F R SE PS 9 PE
$oB
[ mmma— pJHITOL
B pJH1702
S pIHITO3
] pJH1704
H a pIHIT705

Fig. 3. Restriction map of 6.0- and 4.0-kb DNA fragments in-
serted in pJH2600 and PJH1700, respectively, and subclones
from pJH1700 to localize phbC,,, by using heterologous ex-
pression in E. coli.

The arrows (----=) near the restriction maps show transcriptional direc-
tion of lac promoter of the vector, pUC19. An open reading frame of
phbCy,, of R. sphaeroides 2.4.1 is shown between the restriction maps
with the transcriptional direction (—) of phbC,., (see Fig. 5).
Plasmid designations were shown to the right of the each subclone. B,
BamHI; E, EcoRl; E47, Ecod7Ill; P, Pstl; Pv, Pvull; S, Sall; Sm, Smal,
and St, Saul.
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structed followed by mobilization into E. coli (pDH100)
to check for the formation of PHB (Fig. 3). One sub-
clone, pJH1704 contaning approximately 3.0-kb DNA
extending from the Sall restriction endonuclease site to
the Mbol site used for cloning showed PHB accumulation
in E. coli (pDH100), while no PHB was detected with the
other subclones. From this result it is evident that phbC,,,
was located on the 3.0-kb insert DNA in pJH1704.

Sequence Analysis of phbC, ,,

Since the phbC,,, was further localized to the 2.8-kb
Sall-Pstl fragment of the 3.0-kb DNA of pJH1704, nu-
cleotide sequence was determined from both strands of
the 2.8-kb DNA (Fig. 4). A DNA sequence encoding an
open reading frame (ORF) of 601 amino acids was
found. This had an ATG start codon preceded by the
potential Shine-Dalgarno sequence, AGGGGG (5). The
predicted molecular mass of the putative polypeptide of
PHB synthase was estimated to be 66,828 Da. The
average G + C content, 6§7%, is similar to that of other
genes isolated from R. sphaeroides (14). A potential - 10
sequence rtecognized by the o™ (7) is located at ap-
proximately 104 bp upstream of the translation start co-
don (Fig. 5, the first underline). One inverted repeat was
detected at 53 nucleotides downstream of the stop codon,
TGA. The free enegy value (AG) calculated according to
the method of Tinoco ef al. (34) for the possible stem-
loop structure is -22.6 kcal/mol. The proposed structure
is followed by five T residues, a feature that resembles a
typical rho-independent terminator structure in E. coli (1).

The nucleotide sequence of the phbC,,, exhibited 99.9%
homology to the that of phbC of R sphaercides ATCC
17023 (9). Only one differece was found at the second nu-
cleotide of the codon for the 144th amino acid. It is C of
GCG for alanine in R sphaeroides 24.1, while R.
sphaeroides ATCC17023 has glycine by the codon of GGG.

Expression of phbC,,, in E. coil

To localize the cis-acting regulatory region responsible
for expression of phbC,,, in E. coli, three subclones

1kb

Fig. 4. Sequencing directions of the 2.8-kb Sall-Pstl DNA
with subclones derived from pJH1704.

Each subclone was constructed in pUC19 (DNA fragments shown with
«—) and in pUC18 (DNA fragments shown with —). The arrows also
indicate the direction of DNA sequencing. The same abbreviations are
used for restriction enzymes as in Fig. 3.
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Fig. 5. DNA sequence of the phbC, 4, region.

The deduced amino acid sequence for PHB synthase encoded by phbC,,,
is shown above the DNA sequence. A putative -10 region recognized by
6" (7) is underlined at 104 bp upstream of the start codon. The position
of the possible ribosme-binding sequence (5) is also underlined and mark-
ed with S-D. An inverted repeat sequence for putative transcription ter-
minator structure (1) located at the immediate downstream of the stop co-
don is underlined with the facing arrows.
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Fig. 6. Subclones to localze cis-acting DNA region respon-
sible for expression of phbC,,, in E. coli.

The Q is a transcription and translation stop cartridge (27) to prevent
any transcriptional readthrough from lac promoter of the vector. The re-
lative amount of the PHB accumulation was quantitated by comparison
of Azss/Aew after PHB determination by the Law and Slepecky method

(16).

were constructed as shown in Fig. 6. The pOH1704 has
the same 3.0-kb DNA as in pJH1704, while in pOH100
the 2.7-kb insert DNA contains the whole phbC,,, as
well as its upstream DNA limited by the Psi site at 64
bp upstream of the phbC,,, start codon. The pOH1703
was used as a negative control in which the phbC,,,
DNA region encoding 218 amino acids from its N-ter-
minal was deleted. Although all of the three subclones
have the same transcriptional direction of phbC,,, as the
lac promoter of the vector, the presence of transcription
and translation stop cartridge, Q Sm'/Sp' (27) prevents
any transcriptional readthrough of the lac gene.

After each subclone was transformed into E. coli
(pDH100), only pOH1704 tumed the colony opaque
white appearance by accumulating PHB, while the pOH
100 in E. coli (pDH100) maintained a clear colony as
did pOH1703. Quantitation of PHB by the Law and
Slepecky method revealed that pOH1704 in E. coli
(pDH100) produced about 37% of the PHB accumulated
in E. coli (pDH100, pJH1704). The reason for the higher
yield of PHB production with the pJH1704 is probably
due to the additive effect of the transcriptional read-
through from the lac promoter. This result strongly sug-
gests that phbC,,, is expressed in E. coli by its own
promoter(s) as shown earlier with pJH1700 and pJH2600.
Thus, the promoter(s) responsible for the expression of
phbC,,, in E. coli were localized to the 276-bp DNA re-
gion between the Sall and the Psi sites at 340 and 64 bp
upstream of the start codon, respectively. It remains to
be determined whether the potential -10 of the ¢”° re-
cognition sequence (Fig. 5, the first underline) at 104 bp
upstream of the start codon acts as the promoter.

Previously, Hustede et al. (10) reported that PHB syn-
thase activity was not expressed in recombinant E. coli
containing only the phbC of R. sphaeroides ATCC17023.
That experiment was performed in the absence of both
phbA and phbB genes. However, our results clearly
show that phbC,,, is expressed in E. coli (pDH100) to
produce PHB, suggestive of active PHB synthase ex-
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pressed in E. coli. Therefore, we propose that PHB syn-
thase encoded by phbC,,, in E. coli is degraded rapidly
in the absence of its substrate, 3-hydroxybutyryl CoA.
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