Browse > Article
http://dx.doi.org/10.4014/jmb.1601.01019

The Photoheterotrophic Growth of Bacteriochlorophyll Synthase-Deficient Mutant of Rhodobacter sphaeroides Is Restored by I44F Mutant Chlorophyll Synthase of Synechocystis sp. PCC 6803  

Kim, Eui-Jin (Department of Life Science, Sogang University)
Kim, Hyeonjun (Department of Life Science, Sogang University)
Lee, Jeong K. (Department of Life Science, Sogang University)
Publication Information
Journal of Microbiology and Biotechnology / v.26, no.5, 2016 , pp. 959-966 More about this Journal
Abstract
Chlorophyll synthase (ChlG) and bacteriochlorophyll synthase (BchG) have a high degree of substrate specificity. The BchG mutant of Rhodobacter sphaeroides, BG1 strain, is photosynthetically incompetent. When BG1 harboring chlG of Synechocystis sp. PCC 6803 was cultured photoheterotrophically, colonies arose at a frequency of approximately 10-8. All the suppressor mutants were determined to have the same mutational change, ChlGI44F. The mutated enzyme ChlGI44F showed BchG activity. Remarkably, BchGF28I, which has the substitution of F at the corresponding 28th residue to I, showed ChlG activity. The Km values of ChlGI44F and BchGF28I for their original substrates, chlorophyllide (Chlide) a and bacteriochlorophyllide (Bchlide) a, respectively, were not affected by the mutations, but the Km values of ChlGI44F and BchGF28I for the new substrates Bchlide a and Chlide a, respectively, were more than 10-fold larger than those for their original substrates, suggesting the lower affinities for new substrates. Taken together, I44 and F28 are important for the substrate specificities of ChlG and BchG, respectively. The BchG activity of ChlGI44F and the ChlG activity of BchGF28I further suggest that ChlG and BchG are evolutionarily related enzymes.
Keywords
Synechocystis sp. PCC 6803; chlorophyll synthase; Rhodobacter sphaeroides; bacteriochlorophyll synthase;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kim EJ, Lee JK. 2010. Competitive inhibitions of the chlorophyll synthase of Synechocystis sp. strain PCC 6803 by bacteriochlorophyllide a and the bacteriochlorophyll synthase of Rhodobacter sphaeroides by chlorophyllide a. J. Bacteriol. 192: 198-207.   DOI
2 Lange C, Kiesel S, Peters S, Virus S, Scheer H, Jahn D, Moser J. 2015. Broadened substrate specificity of 3-hydroxyethyl bacteriochlorophyllide a dehydrogenase (BchC) indicates a new route for the biosynthesis of bacteriochlorophyll a. J. Biol. Chem. 290: 19697-19709   DOI
3 Lee IH, Park JY, Kho DH, Kim MS, Lee JK. 2002. Reductive effect of H2 uptake and poly-beta-hydroxybutyrate formation on nitrogenase-mediated H2 accumulation of Rhodobacter sphaeroides according to light intensity. Appl. Microbiol. Biotechnol. 60: 147-153.   DOI
4 Markwell MA, Haas SM, Bieber LL, Tolbert NE. 1978. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal. Biochem. 87: 206-210.   DOI
5 McFeeters RF, Chichester CO, Whitaker JR. 1971. Purification and properties of chlorophyllase from Ailanthus altissima (Tree-of-Heaven). Plant Physiol. 47: 609-618.   DOI
6 Meinhardt SW, Kiley PJ, Kaplan S, Crofts AR, Harayama S. 1985. Characterization of light-harvesting mutants of Rhodopseudomonas sphaeroides. I. Measurement of the efficiency of energy transfer from light-harvesting complexes to the reaction center. Arch. Biochem. Biophys. 236: 130-139.   DOI
7 Nomata J, Mizoguchi T, Tamiaki H, Fujita Y. 2006. A second nitrogenase-like enzyme for bacteriochlorophyll biosynthesis: reconstitution of chlorophyllide a reductase with purified X-protein (BchX) and YZ-protein (BchY-BchZ) from Rhodobacter capsulatus. J. Biol. Chem. 281: 15021-15028.   DOI
8 Oster U, Bauer CE, Rüdiger W. 1997. Characterization of chlorophyll a and bacteriochlorophyll a synthases by heterologous expression in Escherichia coli. J. Biol. Chem. 272: 9671-9676.   DOI
9 Rippka R, Deruelles H, Waterbury JB, Herdman M, Stanier RY. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111: 1-61.
10 Saga Y, Hayashi K, Mizoguchi T, Tamiaki H. 2014. Biosynthesis of bacteriochlorophyll c derivatives possessing chlorine and bromine atoms at the terminus of esterifying chains in the green sulfur bacterium Chlorobaculum tepidum. J. Biosci. Bioeng. 118: 82-87.   DOI
11 Schmid HC, Rassadina V, Oster U, Schoch S, Rüdiger W. 2002. Pre-loading of chlorophyll synthase with tetraprenyl diphosphate is an obligatory step in chlorophyll biosynthesis. Biol. Chem. 383: 1769-1778.
12 Schoch S, Oster U, Mayer K, Feick R, Rüdiger W. 1999. Substrate specificity of overexpressed bacteriochlorophyll synthase from Chloroflexus aurantiacus, pp. 213-216. In Argyroudi-Akoyunoglou JH, Senger H (eds.). The Chloroplast: From Molecular Biology to Biotechnology. Kluwer Academic Publishers, Dordrecht, The Netherlands.
13 Simon R, Prlefer U, Pühler A. 1983. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram-negative bacteria. Nat. Biotechnol. 1: 784-791.   DOI
14 Sistrom WR. 1962. The kinetics of the synthesis of photopigments in Rhodopseudomonas sphaeroides. J. Gen. Microbiol. 28: 607-616.   DOI
15 Sobotka R. 2014. Making proteins green; biosynthesis of chlorophyll-binding proteins in cyanobacteria. Photosynth. Res. 14: 223-232.   DOI
16 Addlesee HA, Hunter CN. 1999. Physical mapping and functional assignment of the geranylgeranyl-bacteriochlorophyll reductase gene, bchP, of Rhodobacter sphaeroides. J. Bacteriol. 181: 7248-7255.
17 Tanaka K, Kakuno T, Yamashita J, Horio T. 1982. Purification and properties of chlorophyllase from greened rye seedling. J. Biochem. 92: 1763-1773.   DOI
18 Xiong J, Inoue K, Nakahara M, Bauer CE. 2000. Molecular evidence for the early evolution of photosynthesis. Science 289: 1724-1730.   DOI
19 Addlesee HA, Fiedor L, Hunter CN. 2000. Physical mapping of bchG, orf427, and orf177 in the photosynthesis gene cluster of Rhodobacter sphaeroides: functional assignment of the bacteriochlorophyll synthetase gene. J. Bacteriol. 182: 3175-3182.   DOI
20 Addlesee HA, Gibson LC, Jensen PE, Hunter CN. 1996. Cloning, sequencing and functional assignment of the chlorophyll biosynthesis gene, chlP, of Synechocystis sp. PCC 6803. FEBS Lett. 389: 126-130.   DOI
21 Allen MM. 1968. Simple conditions for growth of unicellular blue-green algae on plates. J. Phycol. 4: 1-4.   DOI
22 Bollivar DW, Suzuki JY, Beatty JT, Dobrowolski JM, Bauer CE. 1994. Directed mutational analysis of bacteriochlorophyll a biosynthesis in Rhodobacter capsulatus. J. Mol. Biol. 237: 622-640.   DOI
23 Chew AG, Bryant DA. 2007. Chlorophyll biosynthesis in bacteria: the origins of structural and functional diversity. Annu. Rev. Microbiol. 61: 113-129.   DOI
24 Clayton PK. 1966. Spectroscopic analysis of bacteriochlorophylls in vitro and in vivo. Photochem. Photobiol. 5: 669-677.   DOI
25 Helfrich M, Schoch S, Lempert U, Cmiel E, Rüdiger W. 1994. Chlorophyll synthetase cannot synthesize chlorophyll a´. Eur. J. Biochem. 219: 267-275.   DOI
26 Donohue TJ, McEwan AG, Kaplan S. 1986. Cloning, DNA sequence, and expression of the Rhodobacter sphaeroides cytochrome c2 gene. J. Bacteriol. 168: 962-972.   DOI
27 Frigaard NU, Bryant DA. 2004. Seeing green bacteria in a new light: genomics-enabled studies of the photosynthetic apparatus in green sulfur bacteria and filamentous anoxygenic phototrophic bacteria. Arch. Microbiol. 182: 265-276.   DOI
28 Hanahan D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166: 557-580.   DOI
29 Hohmann-Marriott MF, Blankenship RE. 2011. Evolution of photosynthesis. Annu. Rev. Plant Biol. 62: 515-548.   DOI
30 Keen NT, Tamaki S, Kobayashi D, Trollinger D. 1988. Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Gene 70: 191-197.   DOI
31 Kho DH, Yoo SB, Kim JS, Kim EJ, Lee JK. 2004. Characterization of Cu- and Zn-containing superoxide dismutase of Rhodobacter sphaeroides. FEMS Microbiol. Lett. 234: 261-267.   DOI
32 Kim EJ, Kim JS, Lee IH, Rhee HJ, Lee JK. 2008. Superoxide generation by chlorophyllide a reductase of Rhodobacter sphaeroides. J. Biol. Chem. 283: 3718-3730.   DOI
33 Kim EJ, Kim JS, Rhee HJ, Lee JK. 2009. Growth arrest of Synechocystis sp. PCC6803 by superoxide generated from heterologously expressed Rhodobacter sphaeroides chlorophyllide a reductase. FEBS Lett. 583: 219-223.   DOI