• Title/Summary/Keyword: Rhizobacterium

Search Result 88, Processing Time 0.02 seconds

Plant Growth Promotion and Antagonistic Activities Against Anthracnose of Burkholderia sp. LPN-2 Strain

  • Kim, WonChan;Seo, SangHyun;Lee, ChangHee;Park, JunHong;Kang, SangJae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.3
    • /
    • pp.251-258
    • /
    • 2016
  • A rhizobacterium LPN-2, which showed strong antifungal activity and auxin producing ability, was isolated from a farmland in North Gyeongsang Province, South Korea. Based on analysis of the 16S rDNA sequence, strain LPN-2 was identified as a novel strain of Burkholderia and was designated as Burkholderia sp. LPN-2. In vitro experiments showed that the isolated stain LPN-2 significantly produced auxin within 48 hr incubation. In order to check for PGPR function we performed in vivo growth promoting test in different crops, including mung bean, pea and cabbage. Application of Burkholderia sp. LPN-2 showed dramatic growth promoting effect on all the tested plants. We also confirmed siderophore and cellulase productions by Burkholderia sp. LPN-2 using CAS blue agar and CMC plate test. Further treatment with LPN-2 and the crude culture broth was effective in suppressing anthracnose in vitro test and also reduced incidence and severity of anthracnose in apple and pepper. Taken together, we conclude that Burkholderia sp. LPN-2 might be used as organic fertilizer for effective crop production in organic farming.

Isolation and Characterization of the Plant Growth Promoting Rhizobacterium, Arthrobacter scleromae SYE-3 on the Yam Growth (식물성장촉진근권미생물 Arthrobacter scleromae SYE-3의 분리 및 Yam (Dioscorea japonica Thunb.) 성장에 미치는 영향 연구)

  • Hong, Sun Hwa;Kim, Ji Seul;Sim, Jun Gyu;Lee, Eun Young
    • KSBB Journal
    • /
    • v.31 no.1
    • /
    • pp.58-65
    • /
    • 2016
  • In this study, Arthrobacter scleromae SYE-3, which was isolated from indigenous plant in a subtropical region, Neigeria, with plant growth promoting activity was evaluated to determine the optimal culture condition. A bacterial strain SYE-3 had the IAA productivity ($89.15{\pm}0.36mg/L$) and ACC deaminase activity ($0.20{\pm}0.06$ at 72 hours). Also, optimal culture conditions such as temperature and pH of strain SYE-3 were $20^{\circ}C$ and 10 in LB medium, respectively. Strain SYE-3 had up to 3% salt tolerance in the LB medium. Plant growth promoting ability of strain SYE-3 using yam (Dioscorea japonica Thunb.) was evaluated. As a result, strain SYE-3 had showed very powerful effect on the increase of the shoot length and root biomass of yam (190.0% and 282.41% increase for 112 days, respectively). These results indicated that Arthrobacter scleromae SYE-3 can serve as a promising microbial resource for the biofertilizers of subtropical crops.

Functional Mechanism of Plant Growth Retardation by Bacillus subtilis IJ-31 and Its Allelochemicals

  • Kim, Won-Chan;Rhee, In-Koo
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.10
    • /
    • pp.1375-1380
    • /
    • 2012
  • We previously isolated a rhizobacterium (Bacillus subtilis IJ-31) and demonstrated that its associated allelochemicals could indicate plant growth retardation. However, little is known about how the growth of plants is regulated by B. subtilis IJ-31 and its allelochemicals. In this study, we investigated whether plant growth retardation in this relationship occurred through the inhibition of gibberellin (GA) biosynthesis. GA $3{\beta}$-hydroxylase activity was found to be inhibited by B. subtilis IJ-31 and hydrocinnamic acid (HCA), which is one of the allelochemicals produced by B. subtilis IJ-31. Additionally, thin layer chromatography (TLC) demonstrated that B. subtilis IJ-31 culture broth and HCA both inhibit GA $3{\beta}$-hydroxylase (MBP-GA4) activity. The retardation of plants by HCA was then confirmed in vivo and in vitro using a Ryegrass and Arabidopsis growth retardation assay. Furthermore, treatment with either B. subtilis IJ-31 culture extract or its allelochemicals resulted in significant down-regulation of XTR9 gene expression in Arabidopsis. Overall, we identified the functional mechanism of plant growth retardation by B. subtilis IJ-31 and its allelochemicals.

Complete genome sequence of drought tolerant plant growth-promoting rhizobacterium Glutamicibacter halophytocola DR408 (내건성 식물생장 촉진 균주인 Glutamicibacter halophytocola DR408의 유전체 분석)

  • Nishu, Susmita Das;Hyun, Hye Rim;Lee, Tae Kwon
    • Korean Journal of Microbiology
    • /
    • v.55 no.3
    • /
    • pp.300-302
    • /
    • 2019
  • Glutamicibacter halophytocola DR408 isolated from the rhizospheric soil of soybean plant at Jecheon showed drought tolerance and plant growth promotion capacity. The complete genome of strain DR408 comprises 3,770,186 bp, 60.2% GC-content, which include 3,352 protein-coding genes, 64 tRNAs, 19 rRNA, and 3 ncRNA. The genome analysis revealed gene clusters encoding osmolyte synthesis and plant growth promotion enzymes, which are known to contribute to improve drought tolerance of the plant.

Molecular Characterization of Biosynthetic Genes of an Antifungal Compound Produced by Pseudomonas fluorescens MC07

  • Kim Jin-Woo;Kim Eun-Ha;Kang Yong-Sung;Choi Ok-Hee;Park Chang-Seuk;Hwang In-Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.3
    • /
    • pp.450-456
    • /
    • 2006
  • Pseudomonas fluorescens MC07 is a growth-promoting rhizobacterium that suppresses mycelial growth in fungi such as Rhizoctonia solani, Pythium ultimum, Fusarium oxysporum, and Phytophthora capsici. To determine the role of the bacterium's antifungal activity in disease suppression, we screened 2,500 colonies generated by Tn5lacZ insertions, and isolated a mutant 157 that had lost antifungal activity. The EcoRI fragment carrying Tn5lacZ was cloned into pBluescript II SK(+) and used as a probe to isolate wild-type clones from a genomic library of the parent strain, MC07. Two overlapping cosmid clones, pEH4 and pEH5, that had hybridized with the mutant clone were isolated. pEH4 conferred antifungal activity to the heterologous host P.fluorescens strain 1855.344, whereas pEH5 did not. Through transposon mutagenesis of pEH4 and complementation analyses, we delineated the 14.7-kb DNA region that is responsible for the biosynthesis of an antifungal compound. DNA sequence analysis of the region identified 11 possible open reading frames (ORF), ORF1 through ORF11. A BLAST search of each putative protein implied that the proteins may be involved in an antifungal activity similar to polyketides.

Structural Identification of $Siderophore_{AH18}$ from Bacillus subtilis AH18, a Biocontrol agent of Phytophthora Blight Disease in Red-pepper (Bacillus subtilis AH18의 고추역병 방제능과 $Siderophore_{AH18}$의 구조분석)

  • Woo, Sang-Min;Kim, Sang-Dal
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.4
    • /
    • pp.326-335
    • /
    • 2008
  • The siderophore ($siderophore_{AH18}$) of Bacillus subtilis AR18 was determined to be one of catechol type and purified by using Amberlite XAD-2, Sephadex LR-20 chromatography, and reversed-phase RPLC. The $Siderophore_{AH18}$ was identified bacillibactin with its structure by GC-MS, $^1H$-NMR, and $^{13}C$-NMR. $Siderophore_{AH18}$ (bacillibactin) had been confirmed its molecular weight of 883 and chemical structure of $(2,3-dihydroxybenzoate-glycine-threonine)_3$. Purified $siderophore_{AH18}$ showed strong biocontrol ability towards the spore of Phytophthora capsici on PDA and able to effectively suppress (55%) P. capsici causing red-pepper blight in the pot in vivo test.

Effects of Pseudomonas aureofaciens 63-28 on Defense Responses in Soybean Plants Infected by Rhizoctonia solani

  • Jung, Woo-Jin;Park, Ro-Dong;Mabood, Fazli;Souleimanov, Alfred;Smith, Donald L.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.4
    • /
    • pp.379-386
    • /
    • 2011
  • The objective of this work was to investigate the ability of the plant growth-promoting rhizobacterium Pseudomonas aureofaciens 63-28 to induce plant defense systems, including defense-related enzyme levels and expression of defense-related isoenzymes, and isoflavone production, leading to improved resistance to the phytopathogen Rhizoctonia solani AG-4 in soybean seedlings. Seven-day-old soybean seedlings were inoculated with P. aureofaciens 63-28, R. solani AG-4, or P. aureofaciens 63-28 plus R. solani AG-4 (P+R), or not inoculated (control). After 7 days of incubation, roots treated with R. solani AG-4 had obvious damping-off symptoms, but P+R-treated soybean plants had less disease development, indicating suppression of R. solani AG-4 in soybean seedlings. Superoxide dismutase (SOD) and catalase (CAT) activities of R. solani AG-4-treated roots increased by 24.6% and 54.0%, respectively, compared with control roots. Ascorbate peroxidase (APX) and phenylalanine ammonia lyase (PAL) activities of R. solani AG-4-treated roots were increased by 75.1% and 23.6%, respectively. Polyphenol oxidase (PPO) activity in soybean roots challenged with P. aureofaciens 63-28 and P+R increased by 25.0% and 11.6%, respectively. Mn-SOD (S1 band on gel) and Fe-SOD (S2) were strongly induced in P+R-treated roots, whereas one CAT (C1) and one APX (A3) were strongly induced in R. solani AG-4- treated roots. The total isoflavone concentration in P+Rtreated shoots was 27.2% greater than the control treatment. The isoflavone yield of R. solani AG-4-treated shoots was 60.9% less than the control.

An Antifungal Antibiotic Purified from Bacillus megaterium KL39, a Biocontrol Agent of Red-Pepper Phytophthora-Blight Disease

  • JUNG HEE KYOUNG;KIM SANG-DAL
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.1001-1010
    • /
    • 2005
  • Bacillus megaterium KL39, an antibiotic-producing plant growth promoting rhizobacterium (PGPR), was selected from soil. The antifungal antibiotic, denoted KL39, was purified from culture filtrate by column chromatography using Dion HP-20, Silica gel, Sephadex LH-20, and prep-HPLC. Thin layer chromatography, employing the solvent system of ethanol:ammonia:water=8:1:1, showed the $R_{f}$. value of 0.32. The antibiotic KL39 showed a negative reaction with ninhydrin solution, positive with iodine vapor, and also positive with Ehrlich reagent. It was soluble in methanol, ethanol, butanol, and acetonitrile, but insoluble in chloroform, toluene, hexane, ethyl ether, or acetone. Its UV spectrum had the maximum absorption at 208 nm. Amino acid composition, FAB-mass, $^{1}H-NMR,\;^{13}C-NMR$, and atomic analyses showed that the antibiotic KL39 (MW=1,071) has a structure very similar to iturin E. The antibiotic KL39 has a broad antifungal spectrum against a variety of plant pathogenic fungi including Rhizoctonia solani, Pyricularia oryzae, Monilinia froeticola, Botrytis cinenea, Altenaria kikuchiana, Fusarium oxysporum, and F. solani. An MIC value of $10\;{\mu}g/ml$ was determined for Phytophthora capsici. Macromolecular incorporation studies with P. capsici using radioactive [$^{3}H-adenine$] as the precursor, indicated that the antibiotic KL39 strongly inhibits the DNA biosynthesis of the fungal cell. Microscopic observation of the antifungal action showed abnormal hyphal swelling of P. capsici. The purified antibiotic KL39 was very effective for the biocontrol of in vivo Phytophthora-blight disease of pepper.

A Plant Growth-Promoting Pseudomonas fluorescens GL20: Mechanism for Disease Suppression, Outer Membrane Receptors for Ferric Siderophore, and Genetic Improvement for Increased Biocontrol Efficacy

  • LIM, HO SEONG;JUNG MOK LEE;SANG DAL KIM
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.2
    • /
    • pp.249-257
    • /
    • 2002
  • Pseudomonas fluorescens GL20 is a plant growth-promoting rhizobacterium that produces a large amount of hydroxamate siderophore under iron-limited conditions. The strain GL20 considerably inhibited the spore germination and hyphal growth of a plant pathogenic fungus, Fusarium solani, when iron was limited, significantly suppressed the root-rot disease on beans caused by F. solani, and enhanced the plant growth. The mechanism for the beneficial effect of strain GL20 on the disease suppression was due to the siderophore production, evidenced by mutant strains derived from the strain. Analysis of the outer membrane protein profile revealed that the growth of strain GL20 induced the synthesis of specific iron-regulated outer membrane proteins with molecular masses of 85- and 90 kDa as the high-affinity receptors for the ferric siderophore. In addition, a cross-feeding assay revealed the presence of multiple inducible receptors for heterologous siderophores in the strain. In order to induce increased efficacy and potential in biological control of plant disease, a siderophore-overproducing mutant, GL20-S207, was prepared by NTG mutagenesis. The mutant GL20-S207 produced nearly 2.3 times more siderophore than the parent strain. In pot trials of beans with F. solani, the mutant increased plant growth up to 1.5 times compared with that of the parent strain. These results suggest that the plant growth-promoting P. fluorescens GL20 and the genetically bred P. fluorescens GL20-S207 can play an important role in the biological control of soil-borne plant diseases in the rhizosphere.

Characterization of a Heavy Metal-Resistant and Plant Growth-Promoting Rhizobacterium, Methylobacterium sp. SY-NiR1 (중금속 내성 및 식물 생장 향상 근권세균 Methylobacterium sp. SY-NiR1의 분리 및 특성)

  • Koo, So-Yeon;Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.1
    • /
    • pp.58-65
    • /
    • 2007
  • The role of soil microorganisms, specifically rhizobacteria, in the development of rhizoremediation techniques is important to speed up the process and to increase the rate of mobilization or absorption of heavy metals to the plant. In this study, Methylobacterium sp. SY-NiR1 was isolated from the rhizosphere soils of plants in oil and heavy metal-contaminated soil. Based on its pink pigmented colony, rod-shape cells, and belonging in $\alpha-Proteobacteria$, Methylobacterium sp. SY-NiR1 is considered a pink-pigmented facultative methylotroph. SY-NiR1 had the ability to produce indole acetic acid which is one of phytohormones. This bacterium showed resistance against multiple heavy metals such as Cd, Cr, Cu, Pb, Ni, Zn, and the order of its resistance based on $EC_{50}$ was Zn > Ni > Cu > Pb > Cd > Cr. Therefore, Methylobacterium sp. SY-NiR1 can stimulate seed germination and plant growth in soil contaminated with heavy metals.