• Title/Summary/Keyword: Reynolds Number Effect

Search Result 707, Processing Time 0.021 seconds

LAMINAR FLOW OVER A CUBOID (직육면체를 지나는 층류 유동)

  • Kim, Dong-Joo
    • Journal of computational fluids engineering
    • /
    • v.13 no.1
    • /
    • pp.57-62
    • /
    • 2008
  • Laminar flows over a cube and a cuboid (cube extended in the streamwise direction) are numerically investigated for the Reynolds numbers between 50 and 350. First, vortical structures behind a cube and lift characteristics are scrutinized in order to understand the variation in vortex shedding characteristics with respect to the Reynolds number. As the Reynolds number increases, the flow over a cube experiences the steady planar-symmetric, unsteady planar-symmetric, and unsteady asymmetric flows. Similar to the sphere wake, the planar-symmetric flow over a cube can be divided into two different regimes: single-frequency regime and multiple-frequency regime. The former has a single frequency due to regular shedding of vortices with the same strength in time, while the latter has multiple frequency components due to temporal variation in the strength of shed vortices. Second, the effect of the length-to-height ratio of the cuboid on the flow characteristics is investigated for the Reynolds number of 270, at which planar-symmetric vortex shedding takes place behind a cube. With the ratio smaller than one, the flow over the cuboid becomes unsteady asymmetric flow, whereas it becomes steady flow for the ratios greater than one. With increasing the ratio, the drag coefficient first decreases and then increases. This feature is related to the flow reattachment on the side faces of the cuboid.

Characteristics of the Mixed Convection Flow and Heat Transfer in a Channel with Open Cavity (개방된 캐비티를 가진 채널 내에서의 혼합대류 유동과 열전달 특성)

  • Ko, Y.C.;Bae, D.S.;Kim, N.S.
    • Journal of Power System Engineering
    • /
    • v.11 no.4
    • /
    • pp.56-64
    • /
    • 2007
  • A numerical simulation is carried out mixed convection in horizontal channel with a heat source from below of rectangular cavity. Finite volume method was employed for the discretization and PISO algorithm was used for calculating pressure term. The parameters governing the problem are the Reynolds number ($10^{-2}{\leq}Re{\leq}50$), the Rayleigh number ($10^3{\leq}Ra{\leq}2.06{\times}10^5$), the Prandtl number ($0.72{\leq}Pr{\leq}909$), the aspect ratio ($0.5{\leq}AR=W/H{\leq}2$) and the angle of inclination ($0^{\circ}{\theta}60^{\circ}$). Mean Nusselt number distributions were obtained and effect of Reynolds number, Rayleigh number and Prandtl number on mixed convection in the horizontal channel with rectangular cavity were investigated.

  • PDF

Effect of surface roughness on laminar flow in a micro-channel by using lattice Boltzmann method (격자 볼츠만 방법을 이용한 미소채널 내에서의 층류 유동에 대한 표면 거칠기의 영향)

  • Shin, Myung-Seob;Yoon, Joon-Yong;Byun, Sung-Joon;Kim, Kak-Joong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.179-183
    • /
    • 2006
  • Surface roughness is present in most of the microfluidic devices due to the microfabrication techniques. This paper presents lattice Boltzmann method (LBM) results for laminar flow in a microchannel with surface roughness. The surface roughness is modeled by an array of rectangular modules placed on top and bottom side of a parallel-plate channel. In this study, LBGK D2Q9 code in lattice Boltzmann Method is used to simulate flow field for low Reynolds number in a micro-channel. The effects of relative surface roughness, roughness distribution, roughness size and the results are presented in the form of the product of friction factor and Reynolds number. Finally, a significant increase in Poiseuille number is detected as the surface roughness is considered, while the effect of roughness on the microflow field depends on the surface roughness.

  • PDF

The Study about Cooling Effect of a Heated module in a Horizontal Channel with a Variation of Channel Height (수평채널 밑면에 부착된 단일 발열모듈에서 채널높이의 변화에 따른 냉각특성 연구)

  • 이진호;유갑종;장준영;김병하
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.5
    • /
    • pp.348-355
    • /
    • 2001
  • The coupled conduction and convection heat transfer from a protruding heated module in a horizontal channel with a variation of channel height is experimentally investigated. The input power to the module is 3, 7W and thermal resistance of module support is 0.06 , 1.03 and 158K/W. the Reynolds number ranged from 350 to 4500 corresponding to the inlet velocity(0.4~1.3 m/s) and channel height(11~35 mm). The results were obtained that the decrease of thermal resistance of module support reduces the module temperature by redistributing the heat flux and the overall thermal resistance of the module. In the study the effect of channel height is very significant in the adiabatic condition, but negligible in the conjugate condition. Finally, correlations for Nusselt number and $Q_B$/Q with a variation of Reynolds number were developed respectively.

  • PDF

EFFECT OF MAGNETIC FIELD ON LONGITUDINAL FLUID VELOCITY OF INCOMPRESSIBLE DUSTY FLUID

  • N. JAGANNADHAM;B.K. RATH;D.K. DASH
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.2
    • /
    • pp.401-411
    • /
    • 2023
  • The effects of longitudinal velocity dusty fluid flow in a weak magnetic field are investigated in this paper. An external uniform magnetic field parallel to the flow of dusty fluid influences the flow of dusty fluid. Besides that, the problem under investigation is completely defined in terms of identifying parameters such as longitudinal velocity (u), Hartmann number (M), dust particle interactions β, stock resistance γ, Reynolds number (Re) and magnetic Reynolds number (Rm). While using suitable transformations of resemblance, The governing partial differential equations are transformed into a system of ordinary differential equations. The Hankel Transformation is used to solve these equations numerically. The effects of representing parameters on the fluid phase and particle phase velocity flow are investigated in this analysis. The magnitude of the fluid particle is reduced significantly. The result indicates the magnitude of the particle reduced significantly. Although some of our numerical solutions agree with some of the available results in the literature review, other results differs because of the effect of the introduced magnetic field.

Numerical Study of Forced Convection Nanofluid in a U-Bend Tube (U-밴드 관 내부 나노유체의 강제대류에 관한 수치적 연구)

  • Jo, Sung-Won;Choi, Hoon-Ki;Park, Yong-Gap
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.3
    • /
    • pp.141-150
    • /
    • 2022
  • Fluid flow and thermal characteristics of laminar nanofluid(water/Al2O3) flow in a circular U-bend tube have been studied numerically. In this study, the effect of Reynolds number and the solid volume fraction and the impact of the U-bend on the flow field, the heat transfer and pressure drop was investigated. Comparisons with previously published experimental works on horizontal curved tubes show good agreements between the results. Heat transfer coefficient increases by increasing the solid volume fraction of nanoparticles as well as Reynolds number. Also, the presence of the secondary flow in the curve plays a key role in increasing the average heat transfer coefficient. However, the pressure drop curve increases significantly in the tubes with the increase in nanoparticles volume fraction.

Flow in turbulent boundary layers with coriolis force (코리올리힘 이 作용하는 亂流境界層內 의 流動 에 관한 硏究)

  • 이규한
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.2
    • /
    • pp.181-189
    • /
    • 1985
  • The effect of the Coriolis force on the 2-D turbulent boundary layer which is developed in the side wall of the rotating rectangular flow channel was investigated. In this study, we measured mean velocities, turbulent velocity components(axial as well as lateral ones) and Reynolds stresses of the turbulent boundary layer. For high Reynolds number flows, the turbulent boundary layer without pressure gradient is hardly affected by the rotation. For low Reynolds number flows, however, the shearing stress at suction side decreases. Consequently, the velocity near the wall become slower so that the thickness of the viscous sublayer expands. On the other hand, the velocity near the wall at pressure side turns out increased.

Experimental study on wake-induced vibrations of two circular cylinders with two degrees of freedom

  • Du, Xiaoqing;Jiang, Benjian;Dai, Chin;Wang, Guoyan;Chen, Suren
    • Wind and Structures
    • /
    • v.26 no.2
    • /
    • pp.57-68
    • /
    • 2018
  • Wind tunnel tests are conducted to investigate wake-induced vibrations of two circular cylinders with a center-to-center spacing of 4 diameters and attack angle varying from $0^{\circ}$ to $20^{\circ}$ for Reynolds numbers between 18,000 and 168,800. Effects of structural damping, Reynolds number, attack angle and reduced velocity on dynamic responses are examined. Results show that wake-induced vortex vibrations of the downstream cylinder occur in a wider range of the reduced velocity and have higher amplitudes in comparison to the vortex-induced vibration of a single circular cylinder. Two types of wake-induced instability phenomena with distinct dynamic characteristics are observed, which may be due to different generation mechanisms. For small attack angles like $5^{\circ}$ and $10^{\circ}$, the instability of the downstream cylinder characterizes a one-degree-of-freedom (1-DOF) oscillation moving in the across-wind direction. For a large attack angle like $20^{\circ}$, the instability characterizes a two-degree-of-freedom (2-DOF) oscillation with elliptical trajectories. For an attack angle of $15^{\circ}$, the instability can transform from the 1-DOF pattern to the 2-DOF one with the increase of the Reynolds number. Furthermore, the two instabilities show different sensitivity to the structural damping. The 1-DOF instability can be either completely suppressed or reduced to an unsteady oscillation, while the 2-DOF one is relatively less sensitive to the damping level. Reynolds number has important effects on the wake-induced instabilities.

REYNOLDS NUMBER EFFECTS ON MASS TRANSFER IN TURBULENT PIPE FLOW: PART I. MEAN CONCENTRATION FIELD AND LOW-ORDER STATISTICS (난류 파이프 유동 내 물질전달에 대한 레이놀즈 수 영향: Part I. 평균 농도장 및 저차 난류통계치)

  • Kang, Chang-Woo;Yang, Kyung-Soo
    • Journal of computational fluids engineering
    • /
    • v.17 no.3
    • /
    • pp.1-10
    • /
    • 2012
  • Large Eddy Simulation(LES) of turbulent mass transfer in fully developed turbulent pipe flow has been performed to study the effect of Reynolds number on the concentration fields at $Re_{\tau}=180$, 395, 590 based on friction velocity and pipe radius. Dynamic subgrid-scale models for the turbulent subgrid-scale stresses and mass fluxes were employed to close the governing equations. Fully developed turbulent pipe flows with constant mass flux imposed at the wall are studied for Sc=0.71. The mean concentration profiles and turbulent intensities obtained from the present LES are in good agreement with the previous numerical and experimental results currently available. To show the effects of Reynolds number on the turbulent mass transfer, the mean concentration profile, root-mean-square of concentration fluctuations, turbulent mass fluxes, cross-correlation coefficient, turbulent diffusivity and turbulent Schmidt number are presented.

Study on the Jet Impingement Heat Transfer Characteristics at Protruding heated Blocks (돌출 발열블록표면에서의 충돌분류 열전달 특성에 관한 연구)

  • Jeong, In-Gi;Park, Si-U;Park, Su-Cheol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.12
    • /
    • pp.1670-1677
    • /
    • 2000
  • An experimental investigation on heat transfer characteristics of two-dimensional heated blocks using a confined impinging slot jet has been performed. The effect of jet Reynolds number(Re=3900, 5800, 9700), streamwise block spacing(p/w=0.5, 1, 1.5) and dimensionless nozzle to block distance(H/B=1, 2, 4, 6) have been examined with five isothermally heated blocks. With the measurement of jet mean velocity and turbulence intensity distributions at nozzle exit, initially turbulent regimes, are classified. To clarify local heat transfer characteristics, naphthalene sublimation technique as used. The maximum Nusselt number at the stagnation point for the jet Reynolds number is occurred at H/B=4. Besides, the local and a average heat transfer of heated blocks increase with decreasing streamwise block spacing and increasing jet Reynolds number.