Browse > Article
http://dx.doi.org/10.22156/CS4SMB.2022.12.03.141

Numerical Study of Forced Convection Nanofluid in a U-Bend Tube  

Jo, Sung-Won (Division of Smart Manufacturing Engineering, Changwon National University)
Choi, Hoon-Ki (Division of Mechanical Engineering, Changwon National University)
Park, Yong-Gap (Division of Mechanical Engineering, Changwon National University)
Publication Information
Journal of Convergence for Information Technology / v.12, no.3, 2022 , pp. 141-150 More about this Journal
Abstract
Fluid flow and thermal characteristics of laminar nanofluid(water/Al2O3) flow in a circular U-bend tube have been studied numerically. In this study, the effect of Reynolds number and the solid volume fraction and the impact of the U-bend on the flow field, the heat transfer and pressure drop was investigated. Comparisons with previously published experimental works on horizontal curved tubes show good agreements between the results. Heat transfer coefficient increases by increasing the solid volume fraction of nanoparticles as well as Reynolds number. Also, the presence of the secondary flow in the curve plays a key role in increasing the average heat transfer coefficient. However, the pressure drop curve increases significantly in the tubes with the increase in nanoparticles volume fraction.
Keywords
Nanofluid; U-bend tube; solid volume fraction(concentration); Reynolds number; Secondary Flow; Heat Transfer Coefficient; Pressure Drop;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 B. Farajollahi, S. G. Etemad & M. Hojjat. (2010). Heat transfer of nanofluids in a shell and tube heat exchanger. International Journal of Heat and Mass Transfer, 53(1-3), 12-17. DOI : 10.1016/j.ijheatmasstransfer.2009.10.019   DOI
2 S. M. Hashemi & M. A. Akhavan-Behabadi. (2012). An empirical study on heat transfer and pressure drop characteristics of CuO-base oil nanofluid flow in a horizontal helically coiled tube under constant heat flux. International Communications in Heat and Mass Transfer, 39(1), 144-151. DOI : 10.1016/j.icheatmasstransfer.2011.09.002   DOI
3 J. C. Maxwell. (1873). A treatise on electricity and magnetism (Vol. 1). Clarendon press.
4 B. C. Pak & Y. I. Cho. (1998). Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer an International Journal, 11(2), 151-170. DOI : 10.1080/08916159808946559   DOI
5 H. Masuda, A. Ebata & K. Teramae. (1993). Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. (Dispersion of Al2O3, SiO2. and TiO2 ultra-fin particles) Netsu Bussei (Japan), 4(4), 227-233.
6 H. K. Choi & G. J. Yoo. (2014). Numerical study of nanofluids forced convection in circular tubes. Journal of computational fluids engineering, 19(3), 37-43. DOI : 10.6112/kscfe.2014.19.3.037   DOI
7 H. K. Choi & Y. S. Lim. (2019). Numerical study of mixed convection nanofluid in horizontal tube. Journal of Convergence for Information Technology, 9(8), 155-163. DOI : 10.22156./CS4SMB.2019.9.8.155   DOI
8 J. A. Fairbank & R. M. So. (1987). Upstream and downstream influence of pipe curvature on the flow through a bend. International journal of heat and fluid flow, 8(3), 211-217. DOI : 10.1016/0142-727X(87)90030-0   DOI
9 S. E. B. Maiga, S. J. Palm, C. T. Nguyen, G. Roy, & N. Galanis, (2005). Heat transfer enhancement by using nanofluids in forced convection flow. International journal of heat and fluid flow, 26(4), 530-546. DOI : 10.1016/j.ijheatfluidflow.2005.02.004   DOI
10 O. Mahian, A. Kianifar, S. A. Kalogirou, I. Pop, & S. Wongwises, (2013). A review of the applications of nanofluids in solar energy. International Journal of Heat and Mass Transfer, 57(2), 585-594. DOI : 10.1016/j.ijheatmasstransfer.2012.10.037   DOI
11 C. E. Kalb & J. D. Seader. (1972). Heat and mass transfer phenomena for viscous flow in curved circular tubes. International Journal of Heat and Mass Transfer, 15(4), 801-817. DOI : 10.1016/0017-9310(72)90122-6   DOI
12 M. Kahani, S. Z. Heris & S. M. Mousavi. (2014). Experimental investigation of TiO2/water nanofluid laminar forced convective heat transfer through helical coiled tube. Heat and Mass Transfer, 50(11), 1563-1573. DOI : 10.1007/s00231-014-1367-4   DOI
13 ANSYS. (2019). ANSYS Fluent V.19 User Guide, USA.
14 J. Koo & C. Kleinstreuer. (2004). A new thermal conductivity model for nanofluids. Journal of Nanoparticle research, 6(6), 577-588. DOI : 10.1007/s11051-004-3170-5   DOI
15 P. C. Mukesh Kumar, J. Kumar & S. Suresh. (2012). Heat transfer and friction factor studies in helically coiled tube using Al2O3/water Nanofluid. European Journal of Scientific Research, 82, 161-172.
16 F. N. Van de Vosse, A. A. Van Steenhoven, A. Segal & J. D. Janssen. (1989). A finite element analysis of the steady laminar entrance flow in a 90 curved tube. International journal for numerical methods in fluids, 9(3), 275-287. DOI : 10.1002/fld.1650090304   DOI
17 R. S. Vajjha & D. K. Das. (2009). Experimental determination of thermal conductivity of three nanofluids and development of new correlations. International Journal of Heat and Mass Transfer, 52(21-22), 4675-4682. DOI : 10.1016/j.ijheatmasstransfer.2009.06.027   DOI
18 B. E. EBRAHIMNIA & H. Niazmand. (2011). Convective heat transfer of nanofluids flows through an isothermally heated curved pipe. Iran. J. Chem. Eng, 8(2), 81-97.
19 H. Mahdizadeh & N. M. Adam. (2021). Numerical study of heat transfer in 90° bend tube by Al2O3 nanofluids using fluid injection. Journal of Engineering, Design and Technology, 19(1), 127-148. DOI : 10.1108/JEDT-02-2020-0061   DOI
20 S. Mirmasoumi & A. Behzadmehr. (2008). Effect of nanoparticles mean diameter on mixed convection heat transfer of a nanofluid in a horizonatl tube. International journal of heat and fluid flow, 29(2), 557-566. DOI : 10.1016/j.ijheatfluidflow.2007.11.007   DOI
21 S. Lee, S. U. S. Choi, S. Li & J. A. Eastman. (1999). Measuring thermal conductivity of fluids containing oxide nanoparticles. Journal of Heat Transfer, 121(2), 280-289. DOI : 10.1115/1.2825978   DOI
22 S. A. Zonouzi, H. Aminfar & M. Mohammadpourfadr. (2014). 3D numerical investigation of thermal characteristics of nanofluidd flow throught helical tubes using two-phase mixture model. International Journal Computational Methods in Engineering Science and Mechanics, 15(6), 512-521. DOI : 10.1080/15502287.2014.952847   DOI
23 S. U. Choi, D. A. Singer & H. P. Wang. (1995). Developments and applications of non-Newtonian flows. ASME Fed, 66, 99-105.