DOI QR코드

DOI QR Code

Numerical Study of Forced Convection Nanofluid in a U-Bend Tube

U-밴드 관 내부 나노유체의 강제대류에 관한 수치적 연구

  • Jo, Sung-Won (Division of Smart Manufacturing Engineering, Changwon National University) ;
  • Choi, Hoon-Ki (Division of Mechanical Engineering, Changwon National University) ;
  • Park, Yong-Gap (Division of Mechanical Engineering, Changwon National University)
  • 조성원 (창원대학교 스마트제조융합협동과정) ;
  • 최훈기 (창원대학교 기계공학부) ;
  • 박용갑 (창원대학교 기계공학부)
  • Received : 2022.01.11
  • Accepted : 2022.03.20
  • Published : 2022.03.28

Abstract

Fluid flow and thermal characteristics of laminar nanofluid(water/Al2O3) flow in a circular U-bend tube have been studied numerically. In this study, the effect of Reynolds number and the solid volume fraction and the impact of the U-bend on the flow field, the heat transfer and pressure drop was investigated. Comparisons with previously published experimental works on horizontal curved tubes show good agreements between the results. Heat transfer coefficient increases by increasing the solid volume fraction of nanoparticles as well as Reynolds number. Also, the presence of the secondary flow in the curve plays a key role in increasing the average heat transfer coefficient. However, the pressure drop curve increases significantly in the tubes with the increase in nanoparticles volume fraction.

원형단면 U-밴드 튜브에서 층류인 나노유체(물/Al2O3)의 유동 및 열적 특성을 수치적으로 연구하였다. 이 연구에서는 U-밴드 내부유동에서 Reynolds 수와 고체 체적분율의 영향이 유동장, 열전달 및 압력강하에 미치는 영향을 연구했다. 원형곡관에 대한 이전에 발표된 실험 결과와 본 수치해석의 결과가 잘 일치함을 보여 해석방법의 타당성이 있음을 확인하였다. Reynolds 수 뿐만 아니라 나노입자의 고체 체적분율을 증가시키면 열전달계수도 증가함을 보였다. 또한 곡관에서 형성되는 2차 유동은 평균 열전달계수를 높이는 데 중요한 역할을 한다. 그러나 압력강하 곡선은 나노입자 농도가 증가함에 따라 크게 증가함을 보였다.

Keywords

Acknowledgement

This paper was supported by the research fund of Changwon National University in 2021-2022.

References

  1. J. C. Maxwell. (1873). A treatise on electricity and magnetism (Vol. 1). Clarendon press.
  2. S. U. Choi, D. A. Singer & H. P. Wang. (1995). Developments and applications of non-Newtonian flows. ASME Fed, 66, 99-105.
  3. S. Lee, S. U. S. Choi, S. Li & J. A. Eastman. (1999). Measuring thermal conductivity of fluids containing oxide nanoparticles. Journal of Heat Transfer, 121(2), 280-289. DOI : 10.1115/1.2825978
  4. H. Masuda, A. Ebata & K. Teramae. (1993). Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. (Dispersion of Al2O3, SiO2. and TiO2 ultra-fin particles) Netsu Bussei (Japan), 4(4), 227-233.
  5. O. Mahian, A. Kianifar, S. A. Kalogirou, I. Pop, & S. Wongwises, (2013). A review of the applications of nanofluids in solar energy. International Journal of Heat and Mass Transfer, 57(2), 585-594. DOI : 10.1016/j.ijheatmasstransfer.2012.10.037
  6. S. Mirmasoumi & A. Behzadmehr. (2008). Effect of nanoparticles mean diameter on mixed convection heat transfer of a nanofluid in a horizonatl tube. International journal of heat and fluid flow, 29(2), 557-566. DOI : 10.1016/j.ijheatfluidflow.2007.11.007
  7. S. E. B. Maiga, S. J. Palm, C. T. Nguyen, G. Roy, & N. Galanis, (2005). Heat transfer enhancement by using nanofluids in forced convection flow. International journal of heat and fluid flow, 26(4), 530-546. DOI : 10.1016/j.ijheatfluidflow.2005.02.004
  8. H. K. Choi & G. J. Yoo. (2014). Numerical study of nanofluids forced convection in circular tubes. Journal of computational fluids engineering, 19(3), 37-43. DOI : 10.6112/kscfe.2014.19.3.037
  9. H. K. Choi & Y. S. Lim. (2019). Numerical study of mixed convection nanofluid in horizontal tube. Journal of Convergence for Information Technology, 9(8), 155-163. DOI : 10.22156./CS4SMB.2019.9.8.155
  10. B. Farajollahi, S. G. Etemad & M. Hojjat. (2010). Heat transfer of nanofluids in a shell and tube heat exchanger. International Journal of Heat and Mass Transfer, 53(1-3), 12-17. DOI : 10.1016/j.ijheatmasstransfer.2009.10.019
  11. B. C. Pak & Y. I. Cho. (1998). Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer an International Journal, 11(2), 151-170. DOI : 10.1080/08916159808946559
  12. J. A. Fairbank & R. M. So. (1987). Upstream and downstream influence of pipe curvature on the flow through a bend. International journal of heat and fluid flow, 8(3), 211-217. DOI : 10.1016/0142-727X(87)90030-0
  13. C. E. Kalb & J. D. Seader. (1972). Heat and mass transfer phenomena for viscous flow in curved circular tubes. International Journal of Heat and Mass Transfer, 15(4), 801-817. DOI : 10.1016/0017-9310(72)90122-6
  14. M. Kahani, S. Z. Heris & S. M. Mousavi. (2014). Experimental investigation of TiO2/water nanofluid laminar forced convective heat transfer through helical coiled tube. Heat and Mass Transfer, 50(11), 1563-1573. DOI : 10.1007/s00231-014-1367-4
  15. S. M. Hashemi & M. A. Akhavan-Behabadi. (2012). An empirical study on heat transfer and pressure drop characteristics of CuO-base oil nanofluid flow in a horizontal helically coiled tube under constant heat flux. International Communications in Heat and Mass Transfer, 39(1), 144-151. DOI : 10.1016/j.icheatmasstransfer.2011.09.002
  16. P. C. Mukesh Kumar, J. Kumar & S. Suresh. (2012). Heat transfer and friction factor studies in helically coiled tube using Al2O3/water Nanofluid. European Journal of Scientific Research, 82, 161-172.
  17. ANSYS. (2019). ANSYS Fluent V.19 User Guide, USA.
  18. S. A. Zonouzi, H. Aminfar & M. Mohammadpourfadr. (2014). 3D numerical investigation of thermal characteristics of nanofluidd flow throught helical tubes using two-phase mixture model. International Journal Computational Methods in Engineering Science and Mechanics, 15(6), 512-521. DOI : 10.1080/15502287.2014.952847
  19. J. Koo & C. Kleinstreuer. (2004). A new thermal conductivity model for nanofluids. Journal of Nanoparticle research, 6(6), 577-588. DOI : 10.1007/s11051-004-3170-5
  20. R. S. Vajjha & D. K. Das. (2009). Experimental determination of thermal conductivity of three nanofluids and development of new correlations. International Journal of Heat and Mass Transfer, 52(21-22), 4675-4682. DOI : 10.1016/j.ijheatmasstransfer.2009.06.027
  21. B. E. EBRAHIMNIA & H. Niazmand. (2011). Convective heat transfer of nanofluids flows through an isothermally heated curved pipe. Iran. J. Chem. Eng, 8(2), 81-97.
  22. F. N. Van de Vosse, A. A. Van Steenhoven, A. Segal & J. D. Janssen. (1989). A finite element analysis of the steady laminar entrance flow in a 90 curved tube. International journal for numerical methods in fluids, 9(3), 275-287. DOI : 10.1002/fld.1650090304
  23. H. Mahdizadeh & N. M. Adam. (2021). Numerical study of heat transfer in 90° bend tube by Al2O3 nanofluids using fluid injection. Journal of Engineering, Design and Technology, 19(1), 127-148. DOI : 10.1108/JEDT-02-2020-0061