• Title/Summary/Keyword: Reverse leakage current

Search Result 83, Processing Time 0.023 seconds

Characteristics of directly sputtered AI cathode film using twin target sputtering system for OLEDs

  • Moon, Jong-Min;Lee, Sang-Hyeon;Kim, Han-Ki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.655-658
    • /
    • 2007
  • Characteristics of Al cathode films deposited by using specially designed twin target sputter (TTS) system were investigated. It was found that Al cathode films prepared by TTS were amorphous structure with nanocrystallines due to low substrate temperature and OLEDs fabricated using TTS system have low leakage current density at reverse bias because of effective confinement of energetic particles during sputtering process.

  • PDF

The Aging Diagnostic Technology for Predicting Lifetime of Thyristor Devices (사이리스터 소자의 수명예측을 위한 열화진단기술)

  • Kim, Byung-Cheul;Kim, Hyoung-Woo;Seo, Kil-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.3
    • /
    • pp.197-201
    • /
    • 2007
  • The accelerated aging test equipment which is possible to apply voltage and temperature at the same time, is fabricated to predict lifetime of high capacity thyristor in short time. The variations of the forward/reverse breakdown voltage and the leakage current are investigated as an aging diagnostic tool. Lifetimes of the devices which are predicted from the reverse breakdown voltage with an accelerated aging time, have shown 3-15 years.

The Schottky Diode of Optimal Stepped Oxide Layer for High Breakdown Voltage (높은 항복전압을 위한 최적 계단산화막의 쇼트키 다이오드)

  • Lee, Yong Jae;Lee, Moon Key;Kim, Bong Ryul
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.4
    • /
    • pp.484-489
    • /
    • 1986
  • A device with variable stepped oxide layer along the edge region of Schottky junction have been designed and fabricated. The effect of this stepped oxide layer in the edge region improves the breakdown voltage as a result of the by increase of the depletion layer width, and decreases the leakage current as compared to the effect of conventional field oxide layer, when the reverse voltage was applied. Experimental results shown that the Schottky diode with the the reverse voltage was applied. Experimenal results show that the Schottky diode with the optimal stepped oxide layer maintains nearly ideal I-V characteristics and excellent breakdown voltage(170V) by reducing the edge effect inherent in metal-semiconductor contacts. The optimal conditions of stepped oxide layer are 1700\ulcornerin thickness and 10\ulcorner in length.

  • PDF

Comparison of Electrical Properties of β-Gallium Oxide (β-Ga2O3) Power SBDs with Guard Ring Structures (Guard Ring 구조에 따른 β-산화갈륨(β-Ga2O3) 전력 SBDs의 전기적 특성 비교)

  • Hoon-Ki Lee;Kyujun Cho;Woojin Chang;Jae-Kyoung Mun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.2
    • /
    • pp.208-214
    • /
    • 2024
  • This reports the electrical properties of single-crystal β-gallium oxide (β-Ga2O3) vertical Schottky barrier diodes (SBDs) with a different guard ring structure. The vertical Schottky barrier diodes (V-SBDs) were fabricated with two types guard ring structures, one is with metal deposited on the Al2O3 passivation layer (film guard ring: FGR) and the other is with vias formed in the Al2O3 passivation layer to allow the metal to contact the Ga2O3 surface (metal guard ring: MGR). The forward current values of FGR and MGR V-SBD are 955 mA and 666 mA at 9 V, respectively, and the specific on-resistance (Ron,sp) is 5.9 mΩ·cm2 and 29 mΩ·cm2. The series resistance (Rs) in the nonlinear section extracted using Cheung's formula was 6 Ω, 4.8 Ω for FGR V-SBD, 10.7 Ω, 6.7 Ω for MGR V-SBD, respectively, and the breakdown voltage was 528 V for FGR V-SBD and 358 V for MGR V-SBD. Degradation of electrical characteristics of the MGR V-SBD can be attributed to the increased reverse leakage current caused by the guard ring structure, and it is expected that the electrical performance can be improved by preventing premature leakage current when an appropriate reverse voltage is applied to the guard ring area. On the other hand, FGR V-SBD shows overall better electrical properties than MGR V-SBD because Al2O3 was widely deposited on the Ga2O3 surface, which prevent leakage current on the Ga2O3 surface.

New degradation mechanism of GaAs HBT induced by Hot carriers (핫 캐리어에 의한 GaAs HBT의 새로운 열화 메카니즘)

  • 권재훈;김도현;송정근
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.11
    • /
    • pp.30-36
    • /
    • 1997
  • AlGaAs/GaAs HBTs are developed well enough to be commercialized as an active device in optical transmission system, but there remains the unanswered questions about reliability. In this paper we applied the reverse constant current stress at the high voltage in avalanche region for a long time to find out a new degradation mechanism of junctrion I-V. The unction off-set voltage at which the current vanishes to zero was shifted to the negative direction of applied bias due to the increment of leakage current as the stress time increases. It was identified that the degradation was induced by the hot carriers which were generated at space charge region and trapped at the interface between GaAs base and the passivation nitride enhancing the electric field across the nesa edge.

  • PDF

Twin Target Sputtering System with Ladder Type Magnet Array for Direct Al Cathode Sputtering on Organic Light Emitting Diodes

  • Moon, Jong-Min;Kim, Han-Ki
    • Journal of Information Display
    • /
    • v.8 no.3
    • /
    • pp.5-10
    • /
    • 2007
  • Twin target sputtering (TTS) system with a configuration of vertically parallel facing Al targets and a substrate holder perpendicular to the Al target plane has been designed to realize a direct Al cathode sputtering on organic light emitting diodes (OLEDs). The TTS system has a linear twin target gun with ladder type magnet array for effective and uniform confinement of high density plasma. It is shown that OLEDs with Al cathode deposited by the TTS show a relatvely lower leakage current density $({\sim}1{\times}10^{-5}mA/cm^2)$ at reverse bias of -6V, compared to that ($1{\times}10^{-2}{\sim}10^{-3}$ $mA/cm^2$ at -6V) of OLEDs with Al cathodes grown by conventional DC magnetron sputtering. In addition, it was found that Al cathode films prepared by TTS were amorphous structure with nanocrystallines due to low substrate temperature. This demonstrates that there is no plasma damage caused by the bombardment of energetic particles. This indicates that the TTS system with ladder type magnet array could be useful plasma damage free deposition technique for direct Al cathode sputtering on OLEDs or flexible OLEDs.

누설전류가 작은 $1.3\mum$ GaInAsP/InP 평면매립형 레이저 다이오드

  • Lee, Jung-Gi;Cho, Ho-Sung;Park, Kyung-Hyun;Park, Chan-Yong;Lee, Yong-Tak
    • ETRI Journal
    • /
    • v.13 no.4
    • /
    • pp.2-9
    • /
    • 1991
  • Buried-heterostructure lasers are more difficult to fabricate than weakly index guided or gain guided lasers. However, these strongly index guided structures are most suitable for a source of lightwave transmission systems. But, for conventional etched mesa buried heterostructure lasers, the regrowth of InP blocking layer is difficult and irreproducible. So, there are inevitable leakage currents flowing outside the active region resulting poor performance. To eliminate these problems, we used a planar buried heterostructure. As a results, the average threshold current was 28mA and the differential quantum efficiency was about 20% per facet for $1.3\mum$ GaInAsP/InP PBH-LD. The initial forward leakage current was not exceeding $1\muA$ and the reverse voltage for $-10\muA$ was -3V~-5V, these are improved figure of 1mA~10mA and -1V~-3V for EMBH laser diode. The chip modulation bandwidth was more than 2.4GHz for $1.5I_th$.

  • PDF

The Improvement of Junction Box Within Photovoltaic Power System

  • Sun, Ki-Ju;Cheon, Min-Woo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.6
    • /
    • pp.359-362
    • /
    • 2016
  • In the PV (Photovoltaic) power system, a junction box collects the DC voltage generated from the PV module and transfers it to the PCS (power conditioning system). The junction box prevents damage caused by the voltage difference between the serially connected PV modules and provides convenience while repairing or inspecting the PV array. In addition, the junction box uses the diode to protect modules from the inverse current when the PV power system and electric power system are connected for use. However, by using the reverse blocking diode, heat is generated within the junction box while generating electric power, which decreases the generating efficiency, and causes short circuit and electric leakage. In this research, based on the purpose of improving the performance of the PV module by decreasing the heat generation within the junction box, a junction box with a built-in bypass circuit was designed/manufactured so that a certain capacity of current generated from the PV module does not run through the reverse blocking diode. The manufactured junction box was used to compare the electric power and heating power generated when the circuit was in the bypass/non-bypass modes. It was confirmed that the electric power loss and heat generation indicated a decrease when the circuit was in the bypass mode.

Reduction of Current Crowding in InGaN-based Blue Light-Emitting Diodes by Modifying Metal Contact Geometry

  • Kim, Garam;Kim, Jang Hyun;Park, Euyhwan;Park, Byung-Gook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.588-593
    • /
    • 2014
  • Current crowding problem can worsen the internal quantum efficiency and the negative-voltage ESD of InGaN-based LEDs. In this paper, by using photon emission microscope and thermal emission microscope measurement, we confirmed that the electric field and the current of the InGaN-based LED sample are crowded in specific regions where the distance between p-type metal contact and n-type metal contact is shorter than other regions. To improve this crowding problem of electric field and current, modified metal contact geometry having uniform distance between the two contacts is proposed and verified by a numerical simulation. It is confirmed that the proposed structure shows better current spreading, resulting in higher internal quantum efficiency and reduced reverse leakage current.

Electroluminescent Characteristics of Fluorescent OLED with Alternating Current Negative Voltage (교류 음 전압에 따른 형광 OLED의 전계 발광 특성)

  • Seo, Jung-Hyun;Yang, Jae-Woong;Paek, Kyeong-Kap;Ju, Sung-Hoo
    • Journal of Surface Science and Engineering
    • /
    • v.52 no.2
    • /
    • pp.72-77
    • /
    • 2019
  • To study the characteristics of AC driven OLED, we fabricated the fluorescent OLEDs and analyzed the electroluminescence characteristics of OLEDs with AC negative voltage. The luminance and the current density of the OLED decreased, and the number and size of the dark spots increased in proportion to the duration time and level of the applied AC negative voltage. The current efficiency of the OLED was improved when high AC negative voltage was applied within a short time. When the AC negative voltage of 10 V was applied for 1 minute, the efficiency was improved by 12.4%. Also, the degradation of luminance and current efficiency due to the duration of light emission was improved in the case of OLED applied for 1 minute with 10 V AC negative voltage. These are expected as a result of the improvement of the leakage current characteristics by eliminating the short-circuit region formed by the defect of the OLED at the AC negative high voltage. As a result, the continuous application of AC negative voltage reduced the luminance and the current density of OLED, but the temporary application of AC negative voltage with the proper time and voltage could improve the efficiency and lifetime of OLED.