• Title/Summary/Keyword: Reverse Recovery Time

Search Result 70, Processing Time 0.042 seconds

50V Power MOSFET with Improved Reverse Recovery Characteristics Using an Integrated Schottky Body Diode (Schottky Body Diode를 집적하여 향상된 Reverse Recovery 특성을 가지는 50V Power MOSFET)

  • Lee, Byung-Hwa;Cho, Doo-Hyung;Kim, Kwang-Soo
    • Journal of IKEEE
    • /
    • v.19 no.1
    • /
    • pp.94-100
    • /
    • 2015
  • In this paper, 50V power U-MOSFET which replace the body(PN) diode with Schottky is proposed. As already known, Schottky diode has the advantage of reduced reverse recovery loss than PN diode. Thus, the power MOSFET with integrated Schottky integrated can minimize the reverse recovery loss. The proposed Schottky body diode U-MOSFET(SU-MOS) shows reduction of reverse recovery loss with the same transfer, output characteristic and breakdown voltage. As a result, 21.09% reduction in peak reverse current, 7.68% reduction in reverse recovery time and 35% improvement in figure of merit(FOM) are observed when the Schottky width is $0.2{\mu}m$ and the Schottky barrier height is 0.8eV compared to conventional U-MOSFET(CU-MOS). The device characteristics are analyzed through the Synopsys Sentaurus TCAD tool.

Switching Characteristics Enhancement of PT Type Power Diode using Proton Irradiation Technique (양성자 주입기술을 이용한 PT형 전력다이오드의 스위칭 특성 향상)

  • Kim Byoung-Gil;Choi Sung-Hwan;Lee Jong-Hun;Bae Young-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.3
    • /
    • pp.216-221
    • /
    • 2006
  • Lifetime control technique by proton implantation has become an useful tool for production of modern power devices. In this work, punch-through type diodes were irradiated with protons for the high speed power diode fabrication. Proton irradiation which was capable of controlling carrier's lifetime locally was carried out at the various energy and dose conditions. Characterization of the device was performed by current-voltage, capacitance-voltage and reverse recovery time measurement. We obtained enhanced reverse recovery time characteristics which was about $45\;\%$ of original device reverse recovery time and about $73\;\%$ of electron irradiated device reverse recovery time. The measurement results showed that proton irradiation technique was able to effectively reduce minority carrier lifetime without degrading the other characteristics.

Effects of Electrostatic Discharge Stress on Current-Voltage and Reverse Recovery Time of Fast Power Diode

  • Bouangeune, Daoheung;Choi, Sang-Sik;Cho, Deok-Ho;Shim, Kyu-Hwan;Chang, Sung-Yong;Leem, See-Jong;Choi, Chel-Jong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.4
    • /
    • pp.495-502
    • /
    • 2014
  • Fast recovery diodes (FRDs) were developed using the $p^{{+}{+}}/n^-/n^{{+}{+}}$ epitaxial layers grown by low temperature epitaxy technology. We investigated the effect of electrostatic discharge (ESD) stresses on their electrical and switching properties using current-voltage (I-V) and reverse recovery time analyses. The FRDs presented a high breakdown voltage, >450 V, and a low reverse leakage current, < $10^{-9}$ A. From the temperature dependence of thermal activation energy, the reverse leakage current was dominated by thermal generation-recombination and diffusion, respectively, at low and high temperature regions. By virtue of the abrupt junction and the Pt drive-in for the controlling of carrier lifetime, the soft reverse recovery behavior could be obtained along with a well-controlled reverse recovery time of 21.12 ns. The FRDs exhibited excellent ESD robustness with negligible degradations in the I-V and the reverse recovery characteristics up to ${\pm}5.5$ kV of HBM and ${\pm}3.5$ kV of IEC61000-4-2 shocks. Likewise, transmission line pulse (TLP) analysis reveals that the FRDs can handle the maximum peak pulse current, $I_{pp,max}$, up to 30 A in the forward mode and down to - 24 A in the reverse mode. The robust ESD property can improve the long term reliability of various power applications such as automobile and switching mode power supply.

Analysis of Switching Noise Time Characteristic and Estimation of Frequency Spectrum (스위칭 잡음의 시간 특성 분석을 통한 주파수 특성 예측)

  • Choi, Han-Ol;Ryu, Seung-Real;Kim, Eun-Ha;Park, Dong-Chul;Lee, Jae-Hyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.5
    • /
    • pp.640-645
    • /
    • 2012
  • DC-DC converter and DC-AC inverter in a hybrid electric vehicle (HEV) generate the switching noise. It may be generated by the reverse recovery operation of the power diode in the switching circuit of the converter or the inverter. The shape of the reverse recovery region may be determined by both reverse time and recovery time in the diode. So, in this paper, the frequency spectrum of switching noise was estimated by the shape of the reverse recovery region and compared with the measured results. It shows that the meaningful region of the frequency spectrum is directly related with the reverse time.

Reverse Recovery Current Suppression Power Factor Correction Circuit (역회복 전류억제 역률개선 회로)

  • Jang, Duk-Kyu;Shin, Yong-Hee;Kim, Chan-Sun;Park, Gwi-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.942-943
    • /
    • 2008
  • The boost converter is usually used in power factor correction. The dynamic losses of its output diode are produced during the reverse recovery time. The power efficiency is decreased due to the losses and also it generates the noise. These disadvantages have been remarkably improved by ZCS and ZVS techniques of power factor improvement circuit. Some benefits lead to the achievement of higher power density and the development cost can be decreased. In this paper work, the reverse recovery suppression(RS) PFC method is used. A inductor and a diode are added into the conventional circuit. The switching device, MOSFET is turned off after the reverse recovery current has come to the zero level. The Zero Current Switching(ZCS) is implemented at that time. This power conversion technique improves the efficiency to about 1% and reduces the noise obviously. And the additional inductor can be designed using an original filter core in the circuit. The converter size is reduced effectively.

  • PDF

The Measurements of Ball Recovery Rate for the Cleaning Apparatus in Plate Heat Exchanger Using Ceramic Ball (세라믹 볼을 이용한 판형열교환기 세정장치의 볼 회수율 측정)

  • Chae, Hee-Man;Kwon, Jeong-Tae;Cha, Dong-An;Kwon, Oh-Kyung
    • Journal of Power System Engineering
    • /
    • v.18 no.1
    • /
    • pp.38-44
    • /
    • 2014
  • The objectives of this study are to measure the ball recovery rate of cleaning apparatus for plate heat exchanger. Ceramic ball is used for plate heat exchanger cleaning. The main components of cleaning apparatus are comprised of ball collector, ball trap, ejector, pump and plate heat exchanger. The ball recovery rate are obtained with change in recovery time and velocity of water. The results show that the ball recovery rate is slightly increased with increase in the recovery time and the velocity of water over 0.4 m/s in the straight flow. In the case of reverse flow, the ball recovery rate more increased than straight flow. The maximum ball recovery rate of the straight flow and reverse flow reach 83.97% and 86.61%, respectively, when the velocity and cleaning time are 0.5 m/s and 15min.

Ranking and comparison of draw solutes in a forward osmosis process

  • Sudeeptha, G.;Thalla, Arun Kumar
    • Membrane and Water Treatment
    • /
    • v.8 no.5
    • /
    • pp.411-421
    • /
    • 2017
  • Forward osmosis (FO) is an emerging technology which can possibly make the desalination process more cost and energy efficient. One of the major factors impeding its growth is the lack of an appropriate draw solute. The present study deals with the identification of potential draw solutes, and rank them. The comparison was carried out among ten draw solutes on the basis of four main parameters namely; water flux, reverse salt diffusion, flux recovery and cost. Each draw solute was given three 24 hour runs; corresponding to three different concentrations; and their flux and reverse salt diffusion values were calculated. A fresh membrane was used every time except for the fourth time which was the flux recovery experiment conducted for the lowest concentration and the change of flux and reverse salt diffusion values from the initial run was noted. The organic solutes inspected were urea and tartaric acid which showed appreciable values in other parameters viz. reverse salt diffusion, flux recovery and cost although they generated a lower flux. They ranked 5th and 8th respectively. All the experimented draw solutes were ranked based on their values corresponding to each of the four main parameters chosen for comparison and Ammonium sulfate was found to be the best draw solute.

Learning Framework for Robust Planning and Real-Time Execution Control

  • Wang, Gi-Nam;Yu, Gang
    • Management Science and Financial Engineering
    • /
    • v.8 no.1
    • /
    • pp.53-75
    • /
    • 2002
  • In this Paper, an attempt is made to establish a learning framework for robust planning and real-time execution control. Necessary definitions and concepts are clearly presented to describe real-time operational control in response to Plan disruptions. A general mathematical framework for disruption recovery is also laid out. Global disruption model is decomposed into suitable number of local disruption models. Execution Pattern is designed to capture local disruptions using decomposed-reverse neural mappings, and to further demonstrate how the decomposed-reverse mappings could be applied for solving disrubtion recovery problems. Two decomposed-reverse neural mappings, N-K-M and M-K-N are employed to produce transportation solutions in react-time. A potential extension is also discussed using the proposed mapping principle and other hybrid heuristics. Experimental results are provided to verify the proposed approach.

High-Efficiency Dual-Buck Inverter Using Coupled Inductor (결합 인덕터를 이용한 효율적인 단상 듀얼-벅 인버터)

  • Yang, Min-Kwon;Kim, Yu-Jin;Cho, Woo-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.6
    • /
    • pp.396-405
    • /
    • 2019
  • Single-phase full-bridge inverters have shoot-through problems. Dead time is an essential way of solving these issues, but it distorts the output voltage and current. Dual-buck inverters are designed to eliminate the abovementioned problems. However, these inverters result in switching power loss and electromagnetic interference due to the diode reverse-recovery problem. Previous studies have suggested reducing the switching power loss from diode reverse-recovery, but their proposed methods have complex circuit configurations and high system costs. To alleviate the switching power loss from diode reverse-recovery, the current work proposes a dual-buck inverter with a coupled inductor. In the structure of the proposed inverter, the current flowing into the original diode is divided into a new diode. Therefore, the switching power loss is reduced, and the efficiency of the proposed inverter is improved. Simulation waveforms and experimental results for a 1.0 kW prototype inverter are discussed to verify the performance of the proposed inverter.

Current-voltage Characteristics of Proton Irradiated NPT Type Pourer Diode (양성자가 주입된 NPT형 전력용 다이오드의 전류-전압 특성)

  • Kim Byoung-Gil;Baek Jong-Mu;Lee Jae-Sung;Bae Young-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.1
    • /
    • pp.7-12
    • /
    • 2006
  • Local minority carrier lifetime control by means of particle irradiation is an useful technology for Production of modern silicon Power devices. Crystal damage due to ion irradiation can be easily localized by choosing appropriate irradiation energy and minority tarrier lifetime can be reduced locally only in the damaged layer. In this work, proton irradiation technology was used for improving the switching characteristics of a un diode. The irradiation was carried out with various energy and dose condition. The device was characterized by current-voltage, capacitance-voltage, and reverse recovery time measurements. Forward voltage drop was increased to 1.1 V at forward current of 5 A, which was $120\%$ of its original device. Reverse leakage current was 64 nA at reverse voltage of 100 V, and reverse breakdown voltage was 670 V which was the same voltage as original device without irradiation. The reverse recovery time of device was reduced to about $20\%$ compared to that of original device without irradiation.