International Journal of Management Science
Vol 8, No 1, May 2002

Learning Framework for Robust Planning and
Real-Time Execution Control

Gi~Nam Wang’

Dept. of Industrial and Information Systems Engineering,
Ajou University, Suwon, Korea 442~749

Gang Yu”

Dept. of Minagement Science and Information Systems, McCombs Schocl of Business,
The University of Texas at Austin, Austin, TX78712, USA.

(Received Jan. 2002, Revised Mar. 202, Accepted May 2002)

ABSTRACT

In this paper, an attempt is made to establish a learning framework for robust planning and real—time
execution control. Necessary definitions and concepts are clearly presented to describe real—time
operational control in respénse to plan disruptions. A general mathematical framework for disruption
recovery is also laid out. Global disruption model is decomposed in-o suitable number of local dis—
ruption models. Execution pattern is designed to capture local disruptions using decomposed-—
reverse neural mappings, and to further demonstrate how the decomposed—reverse mappings could
be applied for solving disrubtion recovery problems. Two decomposed—reverse neural mappings, N—-
K~M and M-K-N are embloyed to produce transportation solutions in real—time. A potential ex—
tension is also discussed using the proposed mapping principle and other hybrid heuristics. Experi—
mental results are provided to verify the proposed approach.

1. INTRODUCTION

The e-business environment requires more tightly integrated planning and execu-
tion over on-line and off-line application domain. The nature of material acquisi-
tion, manufacturing and distribution has also been remarkably changed while
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customers demand quick service response to their ordering and to their continu-
ous order changes. The available-to-promise (ATP) and capable-to-promise (CTP)
are examples of quick response policies to customers, which require synchronizing
planning and real-time execution control. The deployment of real-time decision
support systems has increased significantly in recent years. These systems have
become prevalent in air and ground transportation, manufacturing, telecommuni-
cation, and other industries.

There are a number of technological factors that contributed to the growth of
robust planning and real-time execution control systems. Computing speed is now
fast enough to solve complex, large-scale, real-time problems, and computer stor-
age is now large enough to accommodate enterprise-wide data. Network is reli-
able enough to host mission-critical applications, and graphical user interface
(GUI) tools are powerful enough to facilitate rapid application development. The
advent of modern technology allows for real-time data collection, communication,
and information processing and sharing at affordable prices.

In manufacturing, make-to-order (MTO) policy requires a robust and efficient
re-planning and re-scheduling in order to provide accurate and rapid order
promising to customers. MTO companies should generate optimal or near optimal
planning and scheduling in real time as well as a best quotation in order to meet
customer orders. They require an efficient execution control such as real time
scheduling and operations control using feasible resource capacities and con-
firmed orders. On the other hand, make-to-stock (MTS) policy focuses on long-
term or mid-term planning for future forecasting orders while MTO focuses on
short-term scheduling based on received orders. MTS requires a robust planning
that is aimed at handling uncertainties or preparing a safety stock for the future.
However, many companies adopt MTO and MTS policies simultaneously, thus
they require an integrated approach on robust planning and execution control.

The function of ATP and CTP, which aims at notifying the information on
product availability and exact delivery date, is critical under the e-business envi-
ronment. Under the MTO and MTS based bidding situation, customers desire
clearly specified delivery date and quantity as well as best quote. However, what
commonly occurred is that there might be large gaps between planning and ex-
ecution environment such as changes in system conditions, parameters, and re-
source availabilities. Under the situation of occurring dynamic planning change,
optimal or near optimal re-planning and re-scheduling are required in real time.

In this paper, a learning framework for robust planning and real-time execu-
tion control is discussed. Conceptual definitions and a general mathematical
framework are laid out with emphasis on disruption recovery. Disruption model is
approximated by an appropriate number of localized execution patterns, which
are established at planning stage. To capture localized disruptions, a learning
paradigm is designed using two reverse neural mappings. We also demonstrate
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how the identification of execution patterns and reverse mappings could be ap-
plied for solving disruption problems in real-time. A brief discussion is given to
extend to general applications using other hybrid heuristics.

Organization of this paper is as follows. Conceptual definitions and termai-
nologies are given in Section 2. In Section 3, a general mathematical framework
and solution methodologies for robust planning and real-time execution control
are presented. To make our discussion concrete, mathematical models are pre-
sented with a specific description problem. Mathematical disruption model is
formulated in terms of original planning model and disruption models, and the
model is also described approximately by a suitable number of localized execution
patterns. Also presented are the basic concepts and principles of the two reverse
mappings to solve local disruption problem in Section 4. In Section 5, experimen-
tal results are shown and analyzed. Some discussions and concluding remarks are
followed in Section 6.

2. DEFINITIONS AND TERMINOLOGIES

In this section, definitions and necessary terminologies are introduced to set up
robust planning and real-time execution control. Necessary concepts are dis-
cussed in connection with real-time planning and execution control under disrup-
tions. The following definitions are used throughout this paper.

2.1 Real-time operations control:

Given an operational plan (assume optimized or generated with the best effort
during planning stage), real-time operations control is the process of making an
optimal or near optimal decision in real-time on revised execution of the plan
and/or recovery of the plan [G. Yu, 2000].

2.2 Disruption:

Perturbation of the system that may result in plan change. Such perturbation
may be caused by changes in system environment, parameters, resource avail-
abilities, and etc. Disruption model is expressed as a deviation from original
model in terms of disruption parameters.

2.3 Execution patterns:

A disruption model could be partitioned into a number of localized disruption
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models. Execution pattern refers to a localized disruption model and the solution
mapping capability for a given local disruption model. Generally, a pattern could
be a solution model, a well-defined procedure, or a core of solution to a specific
problem, which could be repetitively reusable solutions for handling similar range
of disruption problem. In this paper, execution pattern includes a mapping capa-
bility to produce solutions for a localized disruption model as well as the corre-
sponding mathematical model itself.

2.4 Framework:

A systematically defined process as well as a set of models and model generators
producing solution patterns. A framework may contain a set of classes providing
customizable solution patterns.

Robust planning and execution control may require a number of different solu-
tions depending on application domains and situations. Knowledge depository (.e.,
component depository) is necessary to store and to provide appropriate models and
solutions. Real-time operations control is performed effectively and efficiently by
selection of appropriate execution patterns from well-organized framework.

2.5 Learning framework:

A framework should be able to generate execution patterns, which could be repeti-
tively usable models, solution procedures, or methodologies. In order to make an
optimal or near optimal decision in real-time, it is necessary to store necessary ex-
ecution patterns into a knowledge depository, and it is also essential to give on-line
solutions to specific problems without consuming too much time. Learning charac-
teristics could be helpful for on-line applications. A framework could contains
learning capability in order to produce robust execution patterns in real-time.

Robust solutions could be focused on minimizing the worst—case “opportunity
cost” or on minimizing maximum regret under uncertainty. Emphasis may also be
placed on stochastic approaches under which various scenarios are described with
probability distributions and the goal is to find a solution minimizing expected
total cost [I. Averbakh and O. Berman, 2000]. However, it is difficult to accurately
assess the probability distribution for various scenarios in a given problem. The
min-max regret approach, interpreted as minimizing the worst-case cost, could be
a viable approach in real world applications [P. Kouvelis and G. Yu, 1997].

In this paper, robustness refers to robust problem solving capability to vari-
ous disruption problems. Learning framework is designed for providing robust
solutions in real time to many different disruption cases.

2.6 Robust planning:

Uncertainty in operational systems is often faced at the planning stage. There is



LEARNING FRAMEWORK FOR ROBUST PLANNING 57

insufficient knowledge about parameters of a gystem. Given a plan, there might
be unpredictable disruptions at the execution phase. To cope with such a pertur-
bation result in plan change, various approaches have been studied such as sensi-
tivity analysis, stochastic modeling approach, and min-max regret approach. In
spite of these efforts, there are considerable gap between planning and its realiza-
tion. An attempt is given here to obtain robust planning solution patterns from a
well-organized learning framework.

2.7 Synchronization of planning and execution: robust planning and adaptive
execution

Planning and execution control should be tightly integrated. Planning should be
conducted while taking into account of smooth operational control, and operation-
al control should also be performed with a planning solution in mind. Realization
of planning includes establishing and best performing the current operations con-
trol and re-planning with consideration of execution result to next planning. Dif-
ferent approaches have been proposed for solving re-planning and re-scheduling
tasks (Lynn Ling X Li, 1999), and especially in the supply chain management
area, some models have been presented to perform execution and planning tasks
simultaneously Mark J. Euwe etal., 1998). Mostly employed methods are based
on real time computation and data sharing. Major shortcomings are caused by the
unmanageable computational complexity for solving large-scale problems. Little
effort is given to reduce the number of re-planning and re-scheduling tasks by
using learning framework for generating robust planning and adaptive execution
solutions simultaneously.

3. THE MATHEMATICAL FRAMEWORK AND SOLUTION METHODOLOGIES

We now present a general framework for real-time planning and execution control
Our focus will be on plan recovery under disruptions.

We define the decision space as X, parameter vector of the system as @, and
the objective function as f(.,-). The planning optimization model, P, becomes

(P) z=max f(a:x) subject to x eX

Let the optimal solution to the above model be x*.
Disruptions model, D, can be caused by the following:
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* changes in system environment

* change in system parameters

* change in availability of resources

* new external restrictions, new considerations
* uncertainties in system performance, and

» uncontrollable events.

The above disruptions will lead to

a—2 5q

xXL2,x

A new objective function g (a', x*; x) is necessary for measuring recovery
impact.

Thus, the real-time execution control problem could be expressed as a disrup-
tion model as

zp =max g (a',x*; x) subject to x eX',

The new objective can be modeled as the weighted combination of the original
objective and a term that accounts for the deviation from the original plan:

g(a',x*; x)=af(a', x)+ ph(lx-x*1)

The operational cost for redirecting resource flows, notifying plan changes,
and reflecting the impact caused by recovery are all captured by the last cost term
The weights o and  are used to specify the relative importance of operational
recovery costs.

Commonly occurred are complexities of real problems. One mathematical
model is not enough for describing real planning situations. Multiple objectives
exist with different variables, and there are trade-off relationships between objec-
tive criteria. The problem might be more complex and harder when we consider
disruption model. Mathematically well-defined models and algorithms are not
easily developed. In order to handle complicated disruption problem, robust plan-
ning based on learning paradigm is presented.

3.1 Main Principle of the Proposed Learning Framework

Two disruption models are introduced: global and local disruption model. Global
disruption model includes all ranges of possible plan change while local disrup-
tion model is limited to a specific range of plan changes. In order to handle plan
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changes effectively, the global disruption model is partitioned into a suitable
number of local disruption models depending on the degree of disruption changes.
A focus is given on’ solving local disruption models using learning paradigm.
Problem solving capability is captured by a simple mapping capability obtained
by learning training data set for a given local disruption model, and the mapping
capabilities are generalized for solving test data. Generalization capability could
be used for solving similar local disruption problem not included in training data.
Generalization capability is a general problem solving capability to variant situa-
tion from original plan, which is interpreted as a problem solving capability even
though there is a gap between learning data and testing data.

Learning process involves capturing mapping knowledge from training data
set and it could be applied for handling similar patterns. After learning at plan-
ning stage, real-time planning and execution control are performed by identifica-
tion of appropriate executicn pattern having both similar local disruption model
and solution mapping capability. Therefore, at the planning phase, global and
local disruption models are established with solutions mapping capability. At the
execution phase, the best local disruption model with the corresponding mapping
is selected from the exiting ones and used for finding best solutions.

Planning Framework Execution Control Framework
—
Analysis of Execution Situation Analysis

Current Planning Situations

Checking for

Generation of Planning Scenarios o . ; .
. Existing Major Disruption

Disruption Classification

(Major & Minor Disruption) Execution Pattern Identification
Identification of Planning Models —P]
For Modeling Major Disruptions Execution Component Realization

Capturing Generalization Capability

For Solving Minor Disruption Deploying Execution Component

Figure 1. Robust Framewok for Robust Planning and Real—Time Execution Control

The above figure describes the overall robust framework for real-time plan-
ning and execution control. The robustness of this framework could be connected
to the generality of global model and generalization capability contained in local
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solution patterns.

At the planning stage, the concept of robustness and learning paradigm are
employed in order to handle uncertain and complicated disruptions. The executi-
on control is designed for identifying suitable detail disruption pattern and its
realization to the current problem in real-time.

3.2 Synchronizing Robust Planning and Real-Time Execution Control

In the following, synchronizing steps are briefly presented, and detailed methods
will be given by applying to a specific distribution problem.

Planning Stage: Robust Planning and Capturing Execution Pattern

Step 1. Establish planning model and find optimal or best solutions.

Step 2. Establish disruption model

Step 3. Partition the disruption model into a suitable number of localized models.

Step 4. Generate localized disruption models and find optimal solutions for learn-
ing.

Step 5. Learn appropriate mapping capabilities for each local execution pat-
tern.

Execution Stage: Find Best Solutions and Tuning

Step 1. Identify the best execution pattern to the current disruption situation.
Step 2. Apply mapping structure to obtain execution solutions.

Application Problem

We consider a distribution problem with multi-plants and multi-distribution cen-
ters. There are dynamically changing orders. The problem is to establish weekly
production plans for each plant, and to find daily or hourly distribution schedule
from each plant to each distribution center. For simplicity, a focus is given on
determining weekly production quantity at each plant minimizing the distributi-
on cost, and also given on determining daily or hourly distribution schedule which
is to determine the shipping quantity from each plant to each distribution center
minimizing the total transportation cost. At the planning stage, there might be
insufficient information on customer order quantities, and there might be gaps
between the customer orders and distribution costs at planning phase and those
at execution phase. Due to this uncertain customer orders, each plant and dis-
tribution center requires robust planning.
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In this problem, robust planning could include not only reliably estimating
system parameters liké customer demands but also determining optimal produc-
tion quantity to minimize tatal disruption deviation costs.

With consideration of order priority, above scenario could be extended to mo-
re general situations. In reality, the customer orders could have different priority.
Daily (or hourly) execution control for distribution should be established consid-
ering order priority. Customer differentiation is widely adopted by many compa-
nies as a marketing strategy.

A nearest assignment rule might be dominant when we consider only dis-
tribution cost. However, consideration of manufacturing costs makes the decision
problem complex. Daily (or hourly) scheduling igsues are critical to inventory cost,
machine or line set-up ¢ost, job change cost, and lost orders.

Considering scenario, we define the following variables, parameters, con-
straints, and objective function based on the previous mathematical framework.

a. The planning decision variable (x): weekly production plan,

b. The execution decision variable (x): daily (hourly) distribution channels,
routes, and schedules; distribution processing sequences; vendor selections,
inventory replenishment policy of plant and distribution center, production
schedule and job sequence.

c. The parameters (a): demand forecast, worker daily hours and maximum
overtime hours, promised delivery dates, inventory capacity, transporta-
tion speed, and transportation processing time.

d. The constraints {X): meeting demands, warehouse capacity limitations, de-
livery deadlines, delivery vehicle availability and capacity, ete.

e. The original objecttve function (f(.) ): maximizing total profit

f. The disruptions (D):

° Change in system environment: delivery routes and traffic conditions
change.

o Uncontrollable events: power failures and transportation traffic acci-
dents.

* Change in system parameters: production and inventory capacity.

o Change in resdurce availability: product availability by assembly line or
machine breakdowns.

> New external restrictions: price change, environmental change.

o Uncertainties in system performance: processing of various parts by dif-
ferent parameters.

° New considerations: new customer orders and changing customer prior-
ity.

g. The real-time planning and operations control objective (g(-)): Minimize
the total disruption impact including: customer ill-will; lost profit; missed
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deliveries; increased inventory cost; increased over-time cost; increased
delivery cost; increased production cost; and operational cost for plan
changes.

Planning Stage
Step 1: Establish planning model and find optimal sclution

From the following established planning model (P ), an optimal solution, x,
could be obtained.

x; : Production quantity assigned from plant i to distribution center j
Cy. : Shipping cost from plant ¢ to distribution center j

W. :Inventory storage capacity of plant i

d ;o Customer demand in distribution center j at time

U
Subject to > x; =) d;
i Jj

x; 20, Vi,j
Step 2: Establish Disruption Model

Considering possible plan changes, one general disruption model is not easily
established since there could be multiple objective criteria and they could be
trade-off relationships. For simplicity, we present one compact model for describ-
ing all procedure in planning and execution stage.

Cj; : Changed shipping cost from plant i to distribution center j
d;

; : Changed customer demand in distribution center ;

h; - Production assignment change cost from plant i to distribution center j

established at planning phase.
(D) Minimize ay > Cix; +ﬂ22hij | x; —x;-
T T
Subjectto Y x;=p.d;
i j

xijZO, VZ,]
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Step 3: Partitioning the Disruption Model
From (D), the possible disruption range is decomposed into a suitable number of
local disruption ranges. At the planning stage, Cj and d ; are only given. We

assume that the ranges of Cj; and d;; be estimated.
| max d; — min d} |

ks

|max C:; —minC., |
L L =Vc¢; and
ky

titioned disruption model is

(PD) Minimize a3 Y Cinx; + B Y hy; | x5 ~x;
i Lo

Let

= Vd;. Then the par-

Subject to ini = df"
i
Min(Cyj) +(m -1)Ve; < Cir < Min(C};) + mVey;
Min(d;) +(n-1)Vd; < de' < Min(d}) +nVd;
x; 2 0,vi,j
where &, k,, m,and n are integers satisfying
m=1,2 -, kl and n =1, 2, - k2'

The disruption macdel (D) is described approximately by a number of local
range disruption models (PD), and the total number of localized models are de-
termined by incremental ranges of disruption parameters such as Ve, and Vd;.

Step 4: Generate Localized Disruption Models and Find Optimal Solu-
tions for Learning

Random numbers, within localized range of disruption parameters, are generated

for agiven m=1,2,---,k,and n=1 2 ky, and optimal solutions are found for

learning the disruption ranges

Min(ng) +(m -1)Ve; < Cif"' < Min(C;-j) +mVe;
Min(d;) ~ (n -1)Vd; <d} < Min(d}) + nvd,

Step 5: Capture N-K-M and M-K-N Mapping Structure

In order to solve localized disruption model which hags variable ranged parame-
ters shown in (DP), two neural network mappings are designed. General disrup-
tion problem is not easy to design a simple mapping scheme having a general so-
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lution mapping capability for all possible disruption cases. To overcome this, the
disruption model is decomposed into a suitable number of localized disruption
models, and two complementarily neural mappings are proposed for solving the
decomposed-local disruption problems. Let Vc;(t) and Vd;(t)be the local in-
cremental changes defined in partitioned disruption model (PD). For a given
m=12,,k,and n=12 -, k,y, and optimal solutions are found for learning

the disruption ranges using two reverse mappings.
Min(Cyj) + (m -1)Ve;; < Cf» < Min(Cy) + mVc;;

Min(d)) + (n -1)Vd; <d}" < Min(d}) +nVd;

We designed direct mapping relationship between inlj)P " in]jjp ", and
i J

ZD’ 3 xi? P* is the optimal solution of (PD) and D} is the corresponding demand.
i

Two mappings could be described as

d L} x
x—2>d
The first mapping structure N, is to determine the total shipping quantity

from every plant to each destination (i.e., distribution center). All demands and
source supply quantities are utilized as input vector to map total optimal ship-
ping quantity from each plant to each destination. The first N, has M-K-N map-

ping structure where M is the input vector, K is the number of hidden layer, and
N is the output.
The second mapping is a reverse mapping to the first net N,. The reverse

mapping N, has N-K-M structure where N is input vector, K denotes the hidden
layer, and M is the output. Reverse to the first mapping N;, the input of second
mapping is optimal solution vector for different df" having the same range, and

output is the corresponding demand vector. For given vector N and M, two rever-
se mappings are trained using the same training data set, however they use re-
verse input-output mapping vector.

Execution Stage

Step 1: Identify Best Matching Pattern to the Current Disruption.

For a given real disruption problem of Cif and df , find the best matching local-
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ized disruption model and corresponding two phases mapping (defined as execu-
tion pattern). The real problem might not be the exactly same as that of learning
models. A matching score is applied for finding best execution pattern.

P

.
m

=nﬁn{|c,'-j—;*§|} P. =min{|d;-dF |}

n

where Cf and dJE are real parameters at execution stage.

Step 2: Apply mapping structure to obtain execution solutions

As an execution solution, two neural mappings are proposed to capture disrup-
tions within a pattern. Two neural mappings with hybrid tuning procedure are
employed for solving the disruption problem in real-time.

|

aoedg wajqo1g

?J
uonn{og 189 199[9g

aoedg wa[qorg
SuOIIN]0g SJqIsea,] B]qISSO] JO UOT}RISUSY)

|

N-K-M Neural Mapping M-K-N Neural Mapping
Figure 2. Two M—K-Nand N—K~MNeural Mappings

The above figure shows the complement relationship between the first and
second neural mapping in finding the best solution. Off-line learning is performed,
and all learned mapping knowledge is stored in long-term memory at planning
stage. Real-time solution is obtained using the stored long term-memory. As each
situation is processed, the long-term memory is continuously updated by off-line
learning. The overall procedure in connection with previous framework, shown in
Figure 3, could be described as follows.
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Figure 3. Robust Planning & Real—time Execution Control Framework Flowchart
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Approximation of Feasibility and Optimality for Disruption Problem

One of the most difficult tasks in design of mapping relationship is how to find
the best appropriate mapping relationship between input and output space. For
example, a kind of functicnal mapping relationship could be well approximated
using a feed forward neural network (Lapedes and Farber, Narendra and Par-
thasarathy). Functional mapping structures are commonly based on M-K-N
neural net architecture having M number of inputs, X number of hidden layers,
and N number of outputs. Compared to stochastic systems, deterministic I-O
relationship could be easily captured using appropriate mapping structure. The
M-K-N neural network mapping could be widely used for approximating deter-
ministic functions as well as stochastic functions. Consider general stochastic
function as

Yo = Oectsens Yicn,» Wiets ooos Uppy s oo Bps o €, ©Op) +

where {y,} is an observable sequence of targets, f; is an unknown mapping func-
tion, u, is a sequence of inputs, and e, is a noise process which is independently

identically distributed errors. Feed-forward neural networks of multiple input,
single output, and single hidden-layer have been shown to be capable of approxi-
mating the above nonlinear mapping relationship [Gallant and White 1992, Cy-
benko 1989, Hecht-Ni¢lsen 1989].

Most common digruption problems are based on complex optimization for-
mulation. The optimal feasible solutions could be described as mapping equations
satisfying feasible constraints.

(P) Minimize chijx*ij =7
i
Subject to Z x*ij ::Z dj
T
%;20, Vi,j

The above optimal solution satisfies two linear equations such as optimality
equation and feasibility equation. For a given cost factors, neural network could
be trained to satisfy cptimal feasible solutions using different demands. For the
limited ranges of cost factors and demand variations, neural mapping can capture
approximately optimal feasible equation. Two neural mappings, called as feasible
neural net (FNN) and optimal neural net (ONN), could be designed for capturing
feasible equation as well as optimality equation. FNN
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The first mapping structure N, is to determine the total shipping quantity

from every plant to each destination (i.e., distribution center). All demands and
source supply quantities are utilized as input vector to map total optimal ship-
ping quantity from each plant to each destination. The first N, has M-K-N map-

ping structure where M is the input vector, K is the number of hidden layer, and
N is the output.

Disruption is interpreted as deviation from the original problem space. If we
could design well-defined mapping structure between the original problem and the
solutions, it is possible to apply the mapping scheme for solving disruption problem
in real-time. The global disruption model is decomposed into a suitable number of
local disruption models. A local disruption could be captured by generalization ca-
pability of the neural N-K-M and M-K-N mappings. A real disruption problem could
be overcome by selection of appropriate local disruption model. Decomposition of
mapping space into multiple mapping structures could overcome the global disrup-
tion problem, and it also improves generalization capability, which is also employed
for solving local disruption problem. Generalization capability could alsc be im-
proved by using complement reverse mapping structure such as N-K-M, and M-K-N
mappings especially when there is not enough training data.

Without loss of generality, general extension could be possible by using pro-
posed mapping principle. Depending on the problem, learning paradigm could be
designed based on different mapping structures. Other hybrid learning heuristic
may also be required for solving complicate problem.

4. EXPERIMENTAL ANALYSIS

For simplicity, simple transportation problem is employed for verifying pro-
posed scheme. However, the real disruption situation is not easily modeled by
one well-defined mathematical model. The simplified transportation problem
could be solved efficiently by using the proposed execution pattern identification
and reverse mapping scheme. Depending on different cost functions and de-
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mands, appropriate two reverse mapping netwarks, represented by N-K-M and
M-K-N networks, are trained using data set. The data set is randomly generat-
ed for a given local range of cost and demand, which is utilized for learning an
execution pattern. The number of execution pattern is equal to that of local dis-
ruption model. The total number of execution patterns and local disruption
models could be reduced to smaller by grouping similar execution patterns and
models into one group.

For a local disruption problem, two reverse mappings are trained simultane-
ously satisfying input and output mapping solution. At planning stage, planning
model and global disruption model are established. The global disruption model is
decomposed into a suitable number of local disruption models considering differ-
ent ranges of plan changes. For each local disruption model, a set of training set
is generated for capturing two reverse mappings. At execution stage, appropriate
local disruption model and the corresponding two reverse mappings are selected
using matching scores. From experiments, we could demonstrate how a disrup-
tion problem could be solvable by identification of suitable execution pattern and
the generalization capability of the selected execution pattern.

The two N-K-M and M-K-N neural mappings are designed to capture local
disruption problem for a given execution pattern. For a given N-K-M neural map-
ping, the input vector N is designed as supply quantities and destination de-
mands, and target vector M is designed as the corresponding optimal solutions.
Therefore the vector N and M are determined from problem situation. X denotes
the number of hidden layers, which is determined by experimental analysis. The
number of nodes for a given hidden layers are also determined by experimental
simulation. The reverse M-K-N mapping has reverse elements to N-K-M mapping,
which supply quantities and destination demands are employed as targets, and
the corresponding optimal solutions are used as inputs. The number of destina-
tions is chosen from the range of 10 to 100, and the number of suppliers is also
chosen from the range of 20 to 50, which is practically reasonable.

The first N-K-M mapping net produces coarse solutions for a given input, and
the possible solutions are generated from the coarse solutions. For example, if the
first mapping net produces distribution solution (12, 7.5) from a plant to certain
destination, and if shipping quantities are required to be integers, then the ship-
ping quantities would be (12, 8) and (12, 7). We check feasibility for both solutions,
and consider only feasible solution. If there ig no feasible solution, we find one
feasible solution by incremental moving next feasible solution. In this case the
least cost incremental moving is considered. For example, (12, 8) and (12, 7) are
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infeasible, we consider feasible solution by incremental moving such as (13, 7),
(13, 8), (13, 9), (11, 6), (11, 7), and (11, 8). We select the minimum solution among
the generated 6 solutions. If there is no feasible solution among the generated
feasible solutions, the same procedure is repeated using the generated feasible
solution until obtaining feasible-best solutions. The generated feasible solutions
are evaluated using the second neural net. The second mapping net produces pos-
sible supply quantities and demands using the generated solutions as inputs.
Comparing the second network’s outputs and the real current supply quantities
and demands, and the best solution is determined by selecting the best matching
supplying quantities and demands.
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Figure 4.1 and 4.2 show the N-K-M and M-K-N mapping capabilities for dif-
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ferent costs. Mean Square Errors (MSE) between optimal solutions and mapping
solutions are displayed for different supplies and demands. Each trajectory is
obtained by averaging 20 different cases. Decomposition by different transporta-
tion costs gives a good mapping performance between demands/supplier and the
optimal distribution quantities from plant to each distribution centers. Figure 4.3
shows the N-K-M and M-K-N mapping approximation without decomposition con-
sidering different cost functions. The decomposed mapping nets gives considera-
bly better solution than that of the non-decomposed mapping nets. This shows
that major disruption could be effectively overcome by execution pattern classifi-
cation.
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Figure 4.3 MSE betweian Optimal Solutions and N~K-M & M—K—N Mapping Solutions

Table 1 shows the possible solutions generated by the first neural mapping.
The overall computation is dependent on the number of possible solutions. The
more accurate is the first neural mappings, the less number of solution candi-
dates is considered. In our experiment, real data are used for generating possible
cases, and all neural mapping values are re-estimated based on approximate
rounding-off considering real situations. However, if the output values are in near
middle of two distinct adjacent numbers, two adjacent numbers are considered
simultaneously. The decomposed first mapping produces considerably good solu-
tion, which requires less computation. Output-Mean Absolute Deviation (0-MAD)

denotes mean absolute deviation from optimal solutions for the first mapping

outputs, expressed by Z MJE&I‘%\]
1 X
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Table 1. Comparison of Optimality for the first N—K—~M Net

Training Data Test Data

Problem O- R- Correct O- R- Correct

Type MAD MAD Ratio MAD MAD Ratio
S1 0.00132 0 100 % 0.002425 96.2 % 99.2 %
S2 0.003942 0 100 % 0.008254 94.1 % 98.1 %
S3 0.003762 0 100 % 0.006283 97.2 % 99.2 %
S4 0.004044 0 100 % 0.023919 95.4 % 974 %
S5 0.001914 0 100 % 0.003789 944 % 98.4 %
S6 0.00601 0 100 % 0.030586 95.7 % 97.7 %

Rounded-Mean Absolute Deviation (R-MAD) means the first mapping solu-
tions are rounded based on incremental integers. The correct ratio denotes correct
identification ratio of optimal solution after rounded solutions. In training phase,
perfect optimal solutions could be found while at testing phase there are few error
ratios. However, the optimal solutions could be obtained effectively in the set of
generated possible multiple solutions by evaluating rounded solutions.

Table 2 also demonstrates that the proposed two-complement reverse map-
pings could play an important role in finding the best solution. The first neural
mapping produces a coarse solution, while the second net could be utilized for
selecting the fine solution. Optimal solutions are compared with the proposed
decomposed-reverse mapping solutions. Two reverse mappings could find optimal
solutions for most cases. This illustrates that minor disruptions could be handled
by the generalization capability of the two reverse mappings.

Table 2. Comparison of Optimality for the second M—K—Nand Two Reverse N—-K-M/
M—K—N mapping Net

M-K-N Mappings (Testing Data) Two Reverse Mappings (Testing Data)
Problem 0- R- Correct O- R- Correct
Type MAD MAD Ratio MAD MAD Ratio
S1 0.008222 0.006167 98.2% 0.003986 0 100 %
S2 0.006437 0.004828 99.1 % 0.003117 0.004828 99.9 %
S3 0.021468 0.016101 98.5 % 0.000421 0 100 %
S4 0.025506 1.643 99.4 % 0.002354 0 100 %
S5 0.030439 0.019129 97.6 % 0.004761 0 100 %
S6 0.030439 0.022829 98.3 % 0.004762 0.022829 99.9 %




LEARNING FRAMEWORK FOR ROBUST PLANNING 73

The above results show major and minor disruption cases considering different
transportation costs as well as different demand and supply quantities. The
transportation cost could be proportional to deviational quantities from original
optimal plans. Differéent major disruption cases are generated using different
transportation costs, and different minor disruption cases are also generated us-
ing different values of supplies and demands

5. CONCLUSION

In this paper, an attempt is given to establish robust framework for real-time
planning and execution control. Necessary definitions and concepts are presented
to describe real-time operational control in connection with disruption recovery. A
general mathematical framework is presented and its application to a simple dis-
tribution problem is also illustrated. A learning paradigm is designed using de-
composed-reverse neural mappings, and it demonstrates how the decomposed-
reverse mappings could be applied for solving disruption problem using generali-
zation capability in real-time.

Optimal solutions for different cost functions, interpreted as local disruption,
could be captured by the proposed decomposed two neural mappings. The first
neural mapping produces a coarse solution while the second neural mapping is
utilized for finding a fine solution. The complementary relationship between the
two reverse neural mappings could be utilized efficiently for solving the disrup-
tion problems.

We designed robust planning and real time execution control simultaneously
in order to reduce the gap between planning and execution. At the planning stage,
focus is given on making robust solutions by considering various disruption sce-
narios and also considering execution pattern having general problem solving
capability. As an execution pattern two complementarily reverse mappings are
designed for increasing generalization capability, which is suitable for solving
local plan change. A lot of planning tasks are required for establishing robust
plan based on disruption decomposition. However, most works are based on off-
line stage, and an efficient on-line execution is possible using pre-established
knowledge.

Even though the proposed methodology is applied to the limited transporta-
tion problems, general extensions could be possible by applying the proposed ro-
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bust planning principle and other hybrid heuristics. However, depending on the

problem, different learning paradigms could be designed using different mapping

or algorithm structures. Other hybrid learning heuristics could be developed for

solving more complex problems, which is our future research in connection with

robust disruption prediction. Integrated real-time distribution, production plan-

ning, and execution control in connection with various disruption cases will be our

further research topic.
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