• Title/Summary/Keyword: Retardation of dopant diffusion

Search Result 5, Processing Time 0.019 seconds

Analysis of Dopant Effects in Ni-Silicide for CMOS Technology (CMOS소자를 위한 Ni Silicide의 Dopant에 따른 영향분석)

  • 배미숙;지희환;이헌진;안순의;박성형;이기민;이주형;왕진석;이희덕
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.241-244
    • /
    • 2002
  • The dependence of NiSi properties such as sheet resistance and cross-sectional profile on the dopants was characterized. There was little difference of sheet resistance between various dopants such as As, p, BF2 and B just after R'n formation of NiSi. However, the NiSi properties showed strong dependence on the dopants when thermal treatment was applied after RTf formation. BFa .implanted silicon was the best stable property while As implanted one was the worst. The main reason of the excellence property of BF2 sample is believed to be the retardation of Ni diffusion by the F. Therefore, retardation of Ni diffusion is very desirable fur high performance NiSi technology.

  • PDF

Dependence on Dopant of Ni-silicide for Nano CMOS Device (Nano CMOS소자를 위한 Ni-silicide의 Dopant 의존성 분석)

  • 배미숙;지희환;이헌진;오순영;윤장근;황빈봉;왕진석;이희덕
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.11
    • /
    • pp.1-8
    • /
    • 2003
  • In this paper, the dependence of silicide properties such as sheet resistance and cross-sectional profile on the dopants for source/drain and gate has been characterized. There was little difference of sheet resistance among the dopants such as As, P, BF$_2$ and B$_{11}$ just a(ter formation of NiSi using RTP (Rapid Thermal Process). However, the silicide properties showed strong dependence on the dopants when thermal treatment was applied after silicidation. BF$_2$ implanted silicon showed the most stable property, while As implanted one showed the worst. The main reason of the excellent property of BF$_2$ sample is believed to be tile retardation of hi diffusion by the flourine. Therefore, retardation of Ni diffusion is highly desirable for high performance Ni-silicide technology.y.

A Stacked Polusilicon Structure by Nitridation in N2 Atmosphere for Nano-scale CMOSFETs (나노 CMOS 소자 적용을 위한 질소 분위기에서 형성된 질화막을 이용한 폴리실리콘 적층 구조)

  • Ho, Won-Joon;Lee, Hi-Deok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.11
    • /
    • pp.1001-1006
    • /
    • 2005
  • A new fabrication method is proposed to form the stacked polysilicon gate by nitridation in $N_2$ atmosphere using conventional LP-CVD system. Two step stacked layers with an amorphous layer on top of a polycrystalline layer as well as three step stacked layers with polycrystalline films were fabricated using the proposed method. SIMS profile showed that the proposed method would successfully create the nitrogen-rich layers between the stacked polysilicon layers, thus resulting in effective retardation of dopant diffusion. It was observed that the dopants in stacked films were piled-up at the interface. TEM image also showed clear distinction of stacked layers, their plane grain size and grain mismatch at interface layers. Therefore, the number of stacked polysilicon layers with different crystalline structures, interface position and crystal phase can be easily controlled to improve the device performance and reliability without any negative effects in nano-scale CMOSFETs.

Thermal Stability Improvement of Ni-Silicide on the SOI Substrate Doped B11 for Nano-scale CMOSFET (나노급 CMOSFET을 위한 SOI기판에 도핑된 B1l을 이용한 니켈-실리사이드의 열안정성 개선)

  • Jung, Soon-Yen;Oh, Soon-Young;Lee, Won-Jae;Zhang, Ying-Ying;Zhong, Zhun;Li, Shi-Guang;Kim, Yeong-Cheol;Lee, Ga-Won;Wang, Jin-Suk;Lee, Hi-Deok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.11
    • /
    • pp.1000-1004
    • /
    • 2006
  • In this paper, thermal stability of Ni-silicide formed on the SOI substrate with $B_{11}$ has been characterized. The sheet resistance of Ni-silicide on un-doped SOI and $B_{11}$ implanted bulk substrate was increased after the post-silicidation annealing at $700^{\circ}C$ for 30 min. However, in case of $B_{11}$ implanted SOI substrate, the sheet resistance showed stable characteristics after the post-silicidation annealing up to $700^{\circ}C$ for 30 min. The main reason of the excellent property of $B_{11}$ sample is believed to be the retardation of Ni diffusion by the boron and bottom oxide layer of SOI. Therefore, retardation of Ni diffusion is highly desirable lot high performance Ni silicide technology.

Analysis of Dopant dependence in Ni-Silicide for Sub-l00 nm CMOS Technology (100nm 이하 CMOS 소자의 Source/Drain dopant 종류에 따른 Nickel silicide의 특성분석)

  • Bae, Mi-Suk;Kim, Yong-Goo;Ji, Hee-Hwan;Lee, Hun-Jin;Oh, Soon-Young;Yun, Jang-Gn;Park, Sung-Hyung;Wang, Jin-Suk;Lee, Hi-Deok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.198-201
    • /
    • 2002
  • In this paper, the dependence of Ni-silicide properties such as sheet resistance and cross-sectional profile on the dopants have been characterized. There was little dependence of sheet resistance on the used dopants such as As, P, $BF_{2}$ and $B_{11}$ just after RTP (Rapid Thermal Process). However, the silicide properties showed strong dependence on the dopants when thermal treatment was applied after formation of Ni-silicide. $BF_{2}$ implanted sample shows the best stable property, while $B_{11}$ implanted one was thermally unstable. The main reason of the excellent property of $BF_{2}$ sample is believed to be the retardation of Ni diffusion by the flourine.

  • PDF