• Title/Summary/Keyword: Resizing

Search Result 143, Processing Time 0.026 seconds

Basic Research to Improve the Inelastic Performance of Resizing Algorithms (재분배 기법의 비선형 특성 개선을 위한 기초 연구)

  • Kwon Do-Hyung;Seo Ji-Hyun;Park Hyo-Seon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.535-540
    • /
    • 2006
  • Recently, the resizing algorithms based on the displacement participation factors have been developed for sizing members to satisfy stiffness criteria. It is proved that this resizing algorithms made for utilizing worker's stiffness design are practical and rational when applied to aseismatic design in the range of elastic until now. However, by the preceding research we confirmed that the inelastic performance of steel moment-resisting frame designed by resizing algorithms is not better than that of the frame before resizing. We present therefore a plan for improving inelastic performance of steel moment-resizing frame to which resizing algorithms applied in this paper.

  • PDF

Polygon Resizing Algorithm for Mask Artwork Processing and Layout Verification (마스크 아트웍 처리 및 레이아웃 검증을 위한 다각형 정형 알고리즘)

  • 정자춘;이철동;유영욱
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.6
    • /
    • pp.1087-1094
    • /
    • 1987
  • In this paper, we describe about polygon resizing porblem where the given polygons are expanded or shrunk in two dimensional plane. First, the definition of polygon resizing and it's problems are given, then the enhanced XY method is proposed: the polygon resizing can be completed in one directional sweep of plane only, usisng enhanced plane sweep method. The time complexity is 0(n log n), and space complexity 0(\ulcorner), where n is the number of verties of polygons. The applications of polygon resizing to the mask artwork processing and layout verification are discussed.

  • PDF

Frame resizing scheme in H.264/AVC compressed domain (H.264/AVC 압축 도메인에서의 프레임 resizing 방법)

  • Oh, Hyung-Suk;Kim, Won-Ha
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.145-147
    • /
    • 2006
  • Image resizing is to change an image size by upsampling or downsampling of a digital image. Most still images and video frames are given in a compressed domain on digital media. Image resizing of a compressed image can be performed in a spatial domain via decompression or recompression. In general, resizing of a compressed image in a compressed domain is much faster than that in a spatial domain. In this paper, we propose an approach to resize images in the integer discrete cosine transform (DCT) domain, which exploits the multiplication-convolution property of DCT.

  • PDF

Clock period optimaization by gate sizing and path sensitization (게미트 사이징과 감작 경로를 이용한 클럭 주기 최적화 기법)

  • 김주호
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.1
    • /
    • pp.1-9
    • /
    • 1998
  • In the circuit model that outputs are latched and input vectors are successively applied at inputs, the gate resizing approach to reduce the delay of the critical pathe may not improve the performance. Since the clock period is etermined by delays of both long and short paths in combinational circuits, the performance (clock period) can be optimized by decreasing the delay of the longest path, or increasing the delay of the shortest path. In order to achieve the desired clock period of a circuit, gates lying in sensitizable long and short paths can be selected for resizing. However, the gate selection in path sensitization approach is a difficult problem due to the fact that resizing a gate in shortest path may change the longest sensitizable path and viceversa. For feasible settings of the clock period, new algorithms and corresponding gate selection methods for resizing are proposed in this paper. Our new gate selection methods prevent the delay of the longest path from increasing while resizing a gate in the shortest path and prevent the delay of the shortest path from decreasing while resizing a gate in the longest sensitizable path. As a result, each resizing step is guaranteed not to increase the clock period. Our algorithmsare teted on ISCAS85 benchmark circuits and experimental results show that the clock period can beoptimized efficiently with out gate selection methods.

  • PDF

IMAGE RESIZING IN AN ARBITRARY TRANSFORM DOMAIN

  • Oh, Hyung-Suk;Kim, Won-Ha
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.44-48
    • /
    • 2009
  • This paper develops a methodology for resizing image resolutions in an arbitrary block transform domain. To accomplish this, we represent the procedures resizing images in an arbitrary transform domain in the form of matrix multiplications from which the matrix scaling the image resolutions is produce. The experiments showed that the proposed method produces the reliable performances without increasing the computational complexity, compared to conventional methods when applied to various transforms.

  • PDF

Evaluation of inelastic performance of moment resisting steel frames designed by resizing algorithms (재분배 기법 적용에 따른 모멘트 저항골조의 비선형 특성 평가)

  • Seo, Ji Hyun;Kwon, Bong kwon;Park, Hyo Seon
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.3
    • /
    • pp.361-371
    • /
    • 2006
  • In recent years, to overcome drawbacks related to the aplicati on of classical structural optimization algorithms, various drift design methods based on factores of member displacement participation factors have been developed to size members if they satisfy stiffness criteria. In particular, a resizing algorithm based on dynamic displacement participation factors from the response spectrum analysis has been applied in the drift design of steel structures subjec ted to seismic lateral forces. In this aproach, active members are selected for displacement control based on the displacement participation fa ve members may be taken out and added to the active members for the drift control. The resizing algorithm can be practically and effectively applied to drift design of high-rise buildings however, the inelastic behavior o f the resizing algorithm has not ben evaluated yet. To develop the resizing algorithm considering the performance of nonlinearity as well a s elastic stifness, the evaluation model of resizing algorithm s is developed and aplied to the examples of moment-resisting steel frame, which is one of the simplest structural systems. The inelastic behavior of moment-resisting steel frame designed by the resizing algorithm is also discussed.

Evaluation of Inelastic Performance of a Reinforced Concrete Shear Wall-Frame System Designed by Resizing Algorithms (재분배 기법 적용에 따른 철근 콘크리트 전단벽-골조 시스템의 비선형 특성 평가)

  • An, Jin-Woo;Choi, Se-Woon;Park, Hyo-Seon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.5
    • /
    • pp.473-480
    • /
    • 2011
  • Recently, the resizing algorithms based on the displacement participation factors have been developed for sizing members to satisfy stiffness criteria. It is proved that this resizing algorithms made for utilizing worker's stiffness design are practical and rational due to the simplicity and convenience of the method. The resizing algorithm can be practically and effectively applied to drift design of buildings. However, the researches on the change of inelastic behavior by the resizing algorithm has been insufficient. To identify the effect on the inelastic behavior of buildings by the resizing method, this study used the reinforced concrete shear wall-frame example. Through the application of the resizing method, the weights of shear wall in the lower class and the weights of columns and beams in the upper class increased respectively. And the initial stiffness of the building increased and the ductility of the buildings had similar with that of the initial structure.

Online Resizing of Shared File System In SAN Environment (SAN환경 공유 곡일 시스템의 온라인 리사이징)

  • 임승호;이주평;조준우;박규호
    • Proceedings of the IEEK Conference
    • /
    • 2003.07d
    • /
    • pp.1633-1636
    • /
    • 2003
  • In this paper, we developed the scheme to grow to use newly added disk space without having to kill the application, unmount file system. This scheme, called online resizing, can resize the file system layout with the advent of Logical Volume Manager. The online resizing scheme is designed and implemented in linux cluster system where multiple hosts share the disk data in storage area network environment. It is incorporated with SANfs shared file system and can perform resizing technique with SANfs-VM volume manager. The experimental result shows that it can maximize the availability and capacity of the SANfs system which are important for modem servers where must not lose their customer.

  • PDF

Drift Design Method of High-rise Buildings Considering Design Variable Linking Strategy and Load Combinations (부재 그룹과 하중 조합을 고려한 고층건물 변위조절 설계법)

  • Seo, Ji-Hyun;Park, Hyo-Seon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.4 s.74
    • /
    • pp.357-367
    • /
    • 2006
  • Drift design methods using resizing algorithms have been presented as a practical drift design method since the resizing algorithms proposed easily find drift contribution of each member, called member displacement participation factor, to lateral drift to be designed without calculation of sensitivity coefficient or re-analysis. Weight of material to be redistributed for minimization of the lateral drift is determined according to the member displacement participation factors. However, resizing algorithms based on energy theorem must consider loading conditions because they have different displacement contribution according to different loading conditions. Furthermore, to improve practicality of resizing algorithms, structural member grouping is required in application of resizing algorithms to drift control of high-rise buildings. In this study, three resizing algorithms on considering load condition and structural member grouping are developed and applied to drift design of a 20-story steel-frame shear-wall structure and a 50-story frame shear-wall system with outriggers.

Development of Drift Design Method Considering Characteristics of Member Forces (부재력 특성을 고려한 변위조절설계법 개발)

  • 서지현;박효선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.123-129
    • /
    • 2003
  • Drift design using resizing techniques can be a very practical method in drift design of high-rise buildings since it cannot require sensitivity analysis and structural re-analysis. Resizing techniques has used the cross sectional areas as design variable and supposed that displacement participation factors are inversely proportional to structural weights. Efficiency of resizing techniques based on displacement participation factors may depend on proper selection of sectional properties as design variables. In this study, two different drift design methods with the different sectional properties as design variables are presented and applied to a 20-story structure.

  • PDF