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Abstract 

This paper develops a methodology for resizing image resolutions 

in an arbitrary block transform domain. To accomplish this, we 

represent the procedures resizing images in an arbitrary transform 

domain in the form of matrix multiplications from which the 

matrix scaling the image resolutions is produce. The experiments 

showed that the proposed method produces the reliable 

performances without increasing the computational complexity, 

compared to conventional methods when applied to various 

transforms. 
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1. Introduction 

 
In the current integrated communication environment, 

resizing images or video frames according to the 

communication environment and the device being used is 

essential. Since image or video data to be compressed for 

the efficient transmission are expressed as transformed 

coefficients, it is extremely desirable to resize images 

directly in the transform domains [1]. As video or image 

coding technologies have evolved, various transforms such 

as the DCT, the modified DCT(MDCT) used in 

H.264/AVC and the Discrete Hadamard transform(DHT) 

have been adopted [2]. Therefore, there is an urgent need to 

develop an image resizing methodology applicable to an 

arbitrary transform domain. The current methods of 

resizing images in the transform domain have operated with 

only the DCT. Dugad et al. [3] removes the high frequency 

components and then they devised the matrix operations to 

resize the images. Park et al. [4] symmetrically extended 

the DCT block and then they exploited the convolution-

multiplication theory to derive the window resizing image. 

Since the symmetric extension preserves the high frequency 

components of images, their method produces better image 

quality than that of Dugad et al. but increases more 

computational burden. Salazar et al. [5] and Shu etal. [6] 

developed techniques to scale images with arbitrary 

resolutions. 

Unlike the DCT whose kernels are the real versions of the 

Fourier kernel, the kernels of the modified DCT (MDCT) 

are numbers approximating those of the DCT. So, it is not 

possible to express the MCDT kernels in mathematical 

formulation.    The Hadamard transform is also not related 

to the DCT. This implies that the signal processing theories 

applicable to the DCT are not permissible to other 

transforms. Therefore, in general, the conventional methods 

developed in the DCT domain do not function in other 

transform domains. 

 
Fig 1. Overview of the developed image resizing 

methodology. The developed method can scale image 

resolution in an arbitrary block transform domain. 

 

In this paper, we develop an image resizing methodology 

applicable to an arbitrary transform domain, as illustrated in 

Fig. 1. Our approach is to devise step-by-step procedures 

for resizing images in an arbitrary block transform domain 

and to represent each intermediate procedure in the form of 

matrix multiplications. These matrix multiplications 

produce a single scaling matrix that performs the entire 

procedure at once. Since all of the intermediate procedures 

are merged into the scaling matrix, the proposed method 

does not increase the computational complexity. 

To confirm its applicability to an arbitrary image transform, 

we applied the proposed method to the DCT, the modified 

DCT (MDCT) used in in H.264/AVC [2] and the Discrete 

Hadamard transform (DHT). Although the performance 

varies according to the coding gain of the applied transform 

[7], the proposed method provides reliable performances 

for all of the tested transforms. 

This paper is consisting of the following. In chapterⅡ, it 

introduces block transforms usually applied at image 

processing. In chapterⅢ, we develop the method for the 

down-sampling of image in an arbitrary block transform 

and In chapterⅣ, develop the method for the up-sampling. 

In chapterⅤ, we derive the matrices that perform the 

down/up scaling at the 8x8 DCT, the 4x4 modified DCT, 

the Hadamard Transform domain using the developed 

method. In chapterⅥ, the experiment shows that the 

proposed scheme is applied at an arbitrary transform 

domain and for a still image or a video. Finally, we say 

about the conclusion of this paper in chapterⅦ.  
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2. Orthogonal block transform 
 

We refer to an  image block in the spatial domain 

and its corresponding transform domain block as NNX ×  

and NNX × , respectively. Let NNT ×  denote an NxN 

orthogonal block transform matrix. Then, 
t

NNNNNNNN TxTX ×××× ⋅⋅= and =×NNx  

NNNN

t

NN TxT ××× ⋅⋅ . The transform matrices that are often 

used in image or video processing are as follows; 

● Discrete Cosine Transform (DCT) [7] 

The element of the real DCT matrix is 
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● Modified DCT(MDCT) used in H.264/AVC [2][8] 

The kernel of the MDCT approximates the DCT while it 

yields almost the same performance as the DCT. The 4x4 

(N=4) MDCT matrix is 

                       (1) 

where  

 

The 8x8 (N=8) MDCT matrix adopted by the H.264 

extended profile is 

          (2) 

where 

  
 

● Discrete Hadamard Transform [9] 

The form of the Hadamard transform 

matrix is 

 
where [ ]10 =T . 

 

3. Down-sampling in a transform domain 

 
In this section, we develop a method of down-sampling an 

2Nx2N transform domain block 









=

××

××
× 32

10

22

NNNN

NNNN

NN
XX

XX
X  to an NxN transform 

domain block NNY × . Also let 







=

××

××
× 32

10

22

NNNN

NNNN

NN
xx

xx
x , 

where 
NN

n

NN

t

NN

n

NN TXTx ×××× ⋅⋅=  for n=0, 1, 2, 3. Thus, 

⋅







=

××

××
× t

NNNN

NN

t

NN

NN
T

T
x

0

0
22

 









⋅









××

××

××

××

NNNN

NNNN

NNNN

NNNN

T

T

XX

XX

0

0
32

10

.                 (3) 

 

NNY ×  is the transform domain block down-sampled from 

the spectrum of the image block NNx 22 × . Fig 2. illustrates 

the procedures of the developed down-sampling method. It 

should be noted that  
t

NNNNNNNN TxTX 22222222 ×××× ⋅⋅≠  which implies that 

NNX 22 ×  is not the spectrum of NNx 22 × . Denote NNY 22 ×  

as the spectrum of NNx 22 × . Then, 

t

NNNNNNNN TxTY 22222222 ×××× ⋅⋅=                  (4) 

 

As shown in Fig. 1. the down-sampled image must take 

after the original image NNX 22 ×  as much as possible. Thus, 

we should down-sample NNY 22 ×  that is the spectrum of 

NNx 22 × , instead of down-sampling NNX 22 × . Since the 

energy of an image signal is concentrated mostly in the low 

frequency range, the down-sampling filter should be a low-

pass filter to preserve the low frequency components and 

remove the high frequency components. The matrix 

performing the low-pass filtering in a transform domain is  

[ ]NNNNI ×× 0  where NNI ×  ans NN×0  are NxN identity 

matrix and zero matrix, respectively [3][4]. Therfore, the 

down-sampled transform domain block NNY 22 ×  is 

obtained such as; 

[ ] [ ]tNNNNNNNNNNNN IYIY ×××××× ⋅⋅= 00 22
    (5) 

 

By replacing NNx 22 ×  of Eq. (4) by Eq. (3) and then 

plugging Eq. (4) into Eq. (5), we obtain; 
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Fig 2. Down-sampling procedures. NNX 22 ×  is the input 

transform domain block. NNY 22 ×  is the down-sampled 

transform domain block. 

 

NND 2× is the matrix that performs down-sampling in a 

transform domain. NND 2× is produced by the matrix 

multiplications representing each down- sampling 

procedure. Since the intermediate procedures eventually are 

merged into the matrix NND 2× , the proposed method does 

not increase the computational complexities compared to 

the conventional methods [4]. We will determine NND 2×  

for various transforms in section V. 

 

4. Up-sampling in a transform domain 

 
In this section, we develop a method of up-sampling an 

NxN transform domain block NNX ×  to a 2Nx2N transform 

domain block 

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the spec- trum of the 2Nx2N image block up-sampled from 

the image block whose spectrum is NNX × . Instead, each of 

the NxN blocks consisting of NNY 22 ×  is the spectrum of 

each block at corresponding locations. 

Fig. 3 illustrates the up-sampling procedures. NNX 22 ×  is 

obtained  by up-sampling NNX × . As seen in Fig. 1, the up-

sampled image block whose spectrum is NNX 22 ×  must also 

resemble the image block of NNX × . To fully exploit the 

low frequency components of image signals, the proper up-

sampling filter matrix in a transform domain is [ ]tNNNNI ×× 0 . 

 
Fig 3. Up-sampling procedures. NNX ×  is the input 

transform domain block. NNY 22 × is the up-sampled 

transform domain block. 

 

So, 
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t

NNNNNN IXIX ×××××× ⋅⋅= 0022    (7) 

NNX 22 × is the spectrum of the 2Nx2N image block. 

However, the four NxN blocks constructing NNX 22 ×  are 

not the spectrum of each image block at the corresponding 

locations. Thus, NNX 22 × is not legitimate in the NxN 

transform domain. Let NNy 22 ×  be the 2Nx2N image block 

whose spectrum is NNX 22 × . That is, 
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The legitimate up-sampled transform domain block 

NNY 22 ×  can be obtained by applying the NxN transform to 

the four NxN blocks of NNY 22 × . Therefore, 
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By replacing NNX 22 ×  of Eq. (8) by Eq. (7) and then 

plugging Eq. (8) into Eq. (9), we obtain 
t

NNNNNNNN UXUY ×××× ⋅⋅= 2222                 (10) 

 

NNU ×2  is also the matrix that performs up-sampling in a 

transform domain. 
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5. Up/Down-sampling matrices 

 
In this section, we illustrate the up/down-sampling matrices 

for various transforms. From Eq. (6) and Eq. (10), it can be 

known that
t

NNNN UD ×× = 22 . 

� 8x8 DCT 

By plugging the 8x8 DCT and the 16x16 DCT matrices into 

88×T  and 1616×T  of Eq. (6), the matrix performing down-

sampling in the 8x8 DCT domain is obtained as in Eq. (11). 

Then, the up-sampling matrix is ( )tDCTDCT
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� 4x4 modified DCT(MDCT) used in H.264/AVC 

By plugging the 4x4 MDCT and the 8x8 MDCT matrices 

into 44×T  and 88×T  of Eq. (6), the matrix performing 

down-sampling in the 4x4 MDCT domain such as 
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� 4x4 Discrete Hadamard transform (DHT) 

In the same way, the down-sampling matrix in the 4x4 

DHT domain is  
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6. Experiment and Discussion 

 
To verify that it performs image resizing in an arbitrary 

transform domain, we apply the proposed method to the 

8×8 DCT, the 4×4 modified DCT (MDCT) used in 

H.264/AVC and the 4×4 DHT [2][9]. The original images 

transformed by each transform were first down-sampled 

and up-sampled again by each method. We use the down-

sampling matrix 
NND 2×

and the up-sampling matrix 

NNU ×2
which are obtained in section V. The size of the test 

images is CIF (352×288). The degradation between the 
down/up-sampled image and the original image was 

evaluated by the PSNR. Table 1 compares the PSNR for the 

various transforms. Fig. 4 shows the restored images and 

the difference images between the restored and original 

images.  

The 8×8 DCT produces the best performance, since its 

transform coding gain is the highest among the tested 

transforms[7]. Particularly, in the DCT domain, the 

up/down-sampling matrices obtained by the proposed 

method are the same as the scaling windows derived by 

Park's method whose performance is rated amongst the best 

[4]. It can also be observed that the proposed method and 

Park's method produce even better results than Dugad's 

method [3], since they better preserve the high frequency 

characteristics of the images. Therefore, it is confirmed that 

the proposed method operates in the DCT domain.  

Since the size of the MDCT of H.264/AVC is 4x4, it is 

reasonable to compare the performances of the methods 

using 4x4 transforms. The PSNR  of  4×4 MDCT and the 

4×4 DCT using Park's method are within 0.15 dB of each 

other and the subjective restored image qualities are 

indistinguishable. Considering that the transform coding 

gain of MDCT is slightly lower than that of DCT [2]. we 

can judge that the performances of 4×4 MDCT are reliable. 

Therefore, the proposed method can be also applicable to 

the 4×4 MDCT.  

The relatively low PSNR of the DHT is due to its low 

transform coding gain compared to those of the other 

transforms. The performances of the proposed method in 

the DHT domain are almost same as those of the bi-linear 

interpolation in the spatial domain. This is because the 

DHT kernels are generated from the Haar basis, which is 

equivalent to the bilinear filter [9]. This implies that the 

proposed method also provides reasonable performance in 

the DHT domain.  

We also compared the overall performances of the image 

resizing methods in transform domains and the 

interpolation methods in the spatial domain. The tested 

spatial interpolation filters are the bi-linear filter and the 

filter used in MPEG [10]. As shown in Table 1, the 

methods in transform domain show better results because 

they compactly remove the high frequency components 

where the energy of the image signals rarely exists, while 

maintain well the low components where most of the 

energy lies.  

When applied to the DCT and the MDCT, the proposed 

method requires 4.2 multiplications and 6.7 additions per 

pixel, which is same as that in the case of the Park's method 

[4]. In the DHT, the proposed method requires 2 

multiplications and 2 additions per pixel. Thus, the  

proposed method does not increase the complexity 

compared to the conventional methods. 
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Table 1. PSNR (dB) comparisons of original images and 

up/down-sampled images for each transform domain . 

 Transform Domain Spatial Domain 

8x8 

DCT 

4x4 

MDCT 

4x4 

DHT 

Bi-

linear 

MPEG 

Foreman 33.21 32.58 29.85 29.85 31.33 

Bus 27.69 27.14 25.67 25.67 26.02 

Football 28.47 27.62 25.63 25.63 26.60 

Harbour 34.13 32.00 28.06 28.06 31.34 

Crew 38.17 37.05 34.61 34.61 36.54 

Soccer 31.60 30.94 29.48 29.48 30.10 

City 30.33 29.37 28.28 28.28 28.04 

 

7. Conclusion 
 

This paper develops a method of changing the image 

resolutions in an arbitrary block transform domain, while 

the conventional methods can operate only in the DCT 

domain. The experiments confirmed that the proposed 

method is able to scale the image  resolution in various 

transform domains, while providing reliable performances. 

Therefore, it can be concluded that the proposed method 

can scale the image resolution in an linear block transform 

domains. In a future study, the proposed method should be 

improved to enable it to handle arbitrary images sizes.  
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