• Title/Summary/Keyword: Resistive current

Search Result 449, Processing Time 0.023 seconds

Simulation of HTS Resistive Type Superconducting Fault Current Limiter using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 고온초전도 저항형한류기 시뮬레이션)

  • Lee, Jae-Deuk;Park, Min-Won;Yu, In-Kun
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1385-1387
    • /
    • 2002
  • In the case of HTS Resistive type Superconducting Fault Current Limiter(SFCL), its possibility has been discussed due to its theory and a simple structure. The Resistive type SFCL can be useful for the protection of the power delivery systems from fault current. Effective simulation scheme that can be applied to the utility network readily and cheaply under various conditions considering the sort of faults, the capacity of systems as well are strongly expected and emphasized among researchers. This paper proposes a simulation skill of resistive type SFCL using PSCAD/EMTDC.

  • PDF

Behavioral Current-Voltage Model with Intermediate States for Unipolar Resistive Memories

  • Kim, Young Su;Min, Kyeong-Sik
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.6
    • /
    • pp.539-545
    • /
    • 2013
  • In this paper, a behavioral current-voltage model with intermediate states is proposed for analog applications of unipolar resistive memories, where intermediate resistance values between SET and RESET state are used to store analog data. In this model, SET and RESET behaviors are unified into one equation by the blending function and the percentage volume fraction of each region is modeled by the Johnson-Mehl-Avrami (JMA) equation that can describe the time-dependent phase transformation of unipolar memory. The proposed model is verified by the measured results of $TiO_2$ unipolar memory and tested by the SPECTRE circuit simulation with CMOS read and write circuits for unipolar resistive memories. With the proposed model, we also show that the behavioral model that combines the blending equation and JMA kinetics can universally describe not only unipolar memories but also bipolar ones. This universal behavioral model can be useful in practical applications, where various kinds of both unipolar and bipolar memories are being intensively studied, regardless of polarity of resistive memories.

Nanoscale Probing of Switching Behaviors of Pt Nanodisk on STO Substrates with Conductive Atomic Force Microscopy

  • Lee, Hyunsoo;Kim, Haeri;Van, Trong Nghia;Kim, Dong Wook;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.597-597
    • /
    • 2013
  • The resistive switching behaviors of Pt nanodisk on Nb-doped SrTiO3 single-crystal have been studied with conductive atomic force microscopy in ultra-high vacuum. The nanometer sizes of Pt disks were formed by using self-assembled patterns of silica nanospheres on Nb-doped SrTiO3 single-crystal semiconductor film using the Langmuir-Blodgett, followed by the metal deposition with e-beam evaporation. The conductance images shows the spatial mapping of the current flowing from the TiN coated AFM probe to Pt nanodisk surface on Nb:STO single-crystal substrate, that was simultaneously obtained with topography. The bipolar resistive switching behaviors of Pt nanodisk on Nb:STO single-crystal junctions was observed. By measuring the current-voltage spectroscopy after the forming process, we found that switching behavior depends on the charging and discharging of interface trap state that exhibit the high resistive state (HRS) and low resistive state (LRS), respectively. The results suggest that the bipolar resistive switching of Pt/Nb:STO single-crystal junctions can be performed without the electrochemical redox reaction between tip and sample with the potential application of nanometer scale resistive switching devices.

  • PDF

Simulation for current limiting characteristics of a resistive SFCL in the 22.9 kV distribution system (배전급 저항형 초전도 한류기의 전류제한특성에 대한 EMTDC 시뮬레이션)

  • Choi, Hyo-Sang;Hyun, Ok-Bae;Hwang, Si-Dole;Kim, Sang-Joon
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.268-271
    • /
    • 2000
  • We simulated the current limiting characteristics of a resistive SFCL with 16 ${\Omega}$ of resistance for a single line-to-ground fault in the 22.9 kV system. The transient current during the fault increased up to 6.33 kA, 5.80 kA and 3.71 kA without SFCL at the fault angles of 0${\circ}$,45${\circ}$ and 90${\circ}$, respectively. An resistive SFCL limited the fault current to 2.27 kA in a half cycle. The quench resistance of 16 ${\Omega}$ was suggested to be appropriate to limit the fault current in the 22.9 kV distribution system.

  • PDF

Harmonics Analysis of Leakage Current due to Artificial Contamination of Distribution Arresters (배전용 피뢰기의 인공오손에 의한 누설전류의 고조파 분석)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.9
    • /
    • pp.1306-1313
    • /
    • 2012
  • This paper reports the contamination performance of two distribution arresters (new and used ones) tested under three different contaminant conditions - clean fog, ESDD (equivalent salt deposit density) level (A, B, C, and D), and kaolin contamination conditions, and their leakage current, total leakage current, and component of the resistive leakage current were measured in order to diagnose arrester deterioration. The 3rd harmonics was larger than 5th and 7th ones for the arrester under the clean fog, and as the ESDD contamination level was applied, 5th one became relatively larger than 3rd one. Therefore, these results indicated that the resistive leakage current could be used for the diagnosis of the arresters.

Current limiting characteristics of the resistive and inductive SFCL in the double line-to-ground fault (2선 지락사고에 대한 저항형과 유도형 한류기의 전류제한특성)

  • Choi, Hyo-sang;Hyun, Ok-Bae;Kim, Sang-Joon;Han, Byoung-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1369-1372
    • /
    • 1999
  • We investigated the current limiting characteristics of resistive and inductive SFCLs with 100${\Omega}$ of Quench impedance for a double line-to-ground fault, in the 154 kV transmission system. The fault simulation at the phase angles $0^{\circ}$, $45^{\circ}$, and $90^{\circ}$ showed that the resistive SFCL limited the fault current less than 17 kA without any DC component after one half cycle from the instant of the fault. On the other hand, the inductive SFCL suppressed the current below 12 kA, but with 3$\sim$5 kA of DC component which decreased to zero in 6 cycles. We concluded that the inductive SFCL had higher performance in current limiting but the resistive SFCL was better from the view point of DC components.

  • PDF

Design Method for HTS Wire Length of the Small Scale Resistive Type Superconducting Fault Current Limiter Considering System Resistance (계통 저항을 고려한 소용량 저항형 한류기의 초전도 선재 소모 길이 산출 연구)

  • Lee, W.S.;Choi, S.J.;Jang, J.Y.;Hwang, Y.J.;Kang, J.S.;Yang, D.G.;Lee, H.G.;Ko, T.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.3
    • /
    • pp.14-18
    • /
    • 2011
  • Electrical system is changing to smart grid which includes the distributed generations with reusable energy sources in these days. The distributed generations are environmentally friendly and have no concern with depletion problem. But dispatching distributed generations can cause an increase of the fault current. Resistive type super conducting fault current limiter is one of the candidates of solution for the large fault problem in smart grid. In this paper, a design method for the wire length of fault current limiter and the result of short circuit test for small scale modules considering system resistance are introduced.

A study on operating properties of superconducting fault current limiter in the line-to-line fault (선간 단락사고에 대한 초전도 한류기의 동작특성에 대한 연구)

  • Choi, Hyo-Sang;Hyun, Ok-Bae;Kim, Sang-Joon
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.86-88
    • /
    • 1999
  • We investigated the current limiting characteristics of resistive and inductive SFCLs with $100{\Omega}$ of quench impedance for a line-to-line fault in the 154 kV transmission system. The fault simulation at the phase angles $0^{\circ}$, $45^{\circ}$, and $90^{\circ}$ showed that the resistive SFCL limited the fault current less than 15 kA without any DC component after one half cycle from the instant of the fault. On the other hand, the inductive SFCL suppressed the current below 13 kA, but with $2{\sim}3\;kA$ of DC component which decreased to zero in 6 cycles. We concluded that the inductive SFCL had higher performance in current limiting but the resistive SFCL was better from the view point of DC components.

  • PDF

A Measurement and Diagnosis for Resistive Leakage Current of ZnO Arrester Element (ZnO 피뢰기 소자의 저항분 누설전류 측정 및 분석)

  • Lee, Bok-Hee;Kang, Sung-Man;Park, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2155-2157
    • /
    • 1999
  • This paper describes a new measurement method of resistive current and the technique of deterioration diagnosis for ZnO element. The consequence of current increasing (resistive current) with time is the eventual attainment of a state of thermal instability that may lead to arrester failure. So, it is very important to measure a leakage current of ZnO arrester installed at on-state. For the high-precision and more reliability, an iron core, which has a very high relative permeability, was used for increasing detection sensitivity, and we also used the personal computer for the data storage and program and analysis. And we have verified the reliability and performance of the sensing device through several laboratory tests.

  • PDF

Quench Behaviors of Superconducting YBCO film for Fault Current Limiters applying Protective Current Transformer (변류기(p-CT)를 적용한 YBCO 초전도 저항형 한류기의 ?치 특성)

  • 박권배;이방욱;강종성;오일성;현옥배
    • Progress in Superconductivity
    • /
    • v.5 no.2
    • /
    • pp.128-131
    • /
    • 2004
  • The resistive superconducting fault current limiters (SFCLs) are very attractive devices for the electric power network. But they have some serious problems when the YBCO thin films were used for the current limiting materials due to the in homogeneities caused by manufacturing process. When the YBCO films have some inhomogeneities, simultaneous quenches are difficult to achieve when the fault current limiting units are connected in series for increasing operating voltage ratings. Magnetic field application is one of the prospective way of inducing simultaneous quenches far the series-connected resistive FCL components. Magnetic field was typically generated by the fault current thorough a coil, which is connected to components of the fault current limiter in series, leaving the problem, which provides significant inductance to the power line and suppresses critical current density of the superconducting components. In this article we investigated the possible application of the protective current transformer (p-CT), which is available current source to the magnetic coil. This system inductively coupled to the circuit, therefore, remarkably reducing impedance to the circuit. The current by the protective current transformer was directly fed to the coil, generating magnetic field large enough to reduce critical current density of the components. This successfully induced simultaneous quenches of the series-connected resistive FCL components.

  • PDF