• Title/Summary/Keyword: Resistant microbes

Search Result 68, Processing Time 0.026 seconds

Viability of Probiotics in Feed under High Temperature Conditions and Their Growth Inhibitory Effect on Contaminant Microbes (고온 조건에서 사료 내 생균제의 생존성 및 오염미생물의 생장 억제 효과)

  • Kim, Gyeom-Heon;Yi, Kwon-Jung;Lee, Ah-Ran;Jang, In-Hwan;Song, In-Geun;Kim, Dong-Woon;Kim, Soo-Ki
    • Korean Journal of Microbiology
    • /
    • v.50 no.4
    • /
    • pp.345-350
    • /
    • 2014
  • The aim of this study was to investigate the effect of high temperature on the viability of probiotic organisms (Bacillus subtilis, Lactobacillus plantarum, and Saccharomyces cerevisiae) mixed with animal feed under controlled conditions by simulating a farm feed bin in the summer. Following inoculation of probiotics into the feed, the pH and probiotic viability were monitored during an 8-day incubation at room temperature. Sterile and non-sterile feeds displayed different patterns of pH changes, with increased pH in non-sterile feed at 2 days, but a pattern of decreasing pH at 4 days. The viabilities of S. cerevisiae and B. subtilis after mono/co-inoculation were maintained without substantial changes during the incubation, whereas L. plantarum viability tended to decline. In both non-sterile and sterile feeds, the probiotics were maintained or grew without any antagonistic effects. Probiotic viability was also tested upon a shift to high temperature ($60^{\circ}C$). There was no distinct change in pH between sterile and non-sterile feeds after the temperature shift. L. plantarum and S. cerevisiae could not survive at the high temperature, whereas B. subtilis displayed normal growth, and it inhibited the growth of contaminant microbes. Fungal growth was not observed in non-sterile feed 2 days after supplementation with B. subtilis. Therefore, heat resistant B. subtilis could be safely used in feed bins to inhibit microbial contamination, even at high temperatures. The prevention of elevated temperature in feed bins is necessary for the utilization of L. plantarum and S. cerevisiae during the summer season.

Studies on Bacterial and Fungal Contamination in the Herbal Medicines (한약재에서의 세균과 진균 오염에 관한 연구)

  • Lee, Jin-Sung;Yoon, Young-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.4826-4832
    • /
    • 2010
  • The study has been done for about two months through June 2 to July 30 of 2010. The study subjects are three herbal-pharmaceutical companies located in Seoul. Each of them purchased thirteen types of medicinal herbs, then the study did analysis for microbial contamination status of bacteria and fungi. Here, the study focuses on settling out fundamental data bases regarding the investigation standards of microbial contamination. As comparing the study results with contamination limits of bacteria and fungi which are represented by $10^7$ CFU/g and $10^4$ CFU/g in number respectively, the total percentage of fungi contamination which is 12.8% is higher than that of bacteria is only 7.7%. In the DNA homology analysis regarding 16S rRNA gene, 117 of colonization have been selected as study subjects. Including B. cereus composing of resistant spores, soil microbes account for approximately 96.6%. It indicates that it is important to establish collection and preservation systems in handling medicinal herbs. Also, it is critical to manage microbial contamination limits. In conclusion, the study proposes the needs to study on possible mingling of bacteria and fungi in manufacturing process, and microbial contamination status in medicinal herbs.

Effects of Gamma Irradiation on Queso Blanco Cheese (퀘소블랑코 치즈의 감마선 조사 처리 효과)

  • Jeong, Seok-Geun;Noh, Young-Bae;Shin, Ji-Hye;Han, Gi-Sung;Chae, Hyun-Seok;Yoo, Young-Mo;Ahn, Jong-Nam;Lee, Ju-Woon;Jo, Cheor-Un;Lee, Wan-Kyu;Ham, Jun-Sang
    • Journal of Dairy Science and Biotechnology
    • /
    • v.25 no.1
    • /
    • pp.15-20
    • /
    • 2007
  • Effects of gamma irradiation on chemical, microbiological, and immunological changes of Queso Blanco cheese were investigated. Although Queso Blanco cheese was made by heat pasteurization at 85$^{\circ}$C and addition of acid without lactic starter culture, total bacterial counts and lactic acid bacterial counts of control cheese were 7.65${\pm}$0.04 and 7.64${\pm}$0.02 log CFU/mL, respectively. It was thought that this microbial growth was due to the incomplete inactivation of raw milk by the heat treatment, resulting into growth during the pressing and the drying process. It demonstrated the possibility that if heat- and acid-resistant hazard microbes are present in raw milk, they can grow during the processes. Lactic acid bacterial counts of the irradiated cheese were 5.45${\pm}$0.02 log CFU/mL at 1kGy, 2.12${\pm}$0.12 log CFU/mL at 2kGy, and not detected at 3kGy or higher doses. The reduction of antigenicity by gamma irradiation was not found. It might be caused by the fact that most whey proteins of milk, a major antigen in milk, were already denaturated by heat process and removed during the draining.

  • PDF

Characteristics of Microorganisms Contaminating Seafood Cooking Drips Exposed to Gamma Irradiation (감마선 조사된 수산 자숙액의 오염 미생물군 특성)

  • Choi, Jong-Il;Kim, Yeon-Joo;Kim, Jae-Hun;Chun, Byung-Soo;Ahn, Dong-Hyun;Kwon, Joong-Ho;Hwang, Young-Jung;Byun, Myung-Woo;Lee, Ju-Woon
    • Food Science and Preservation
    • /
    • v.16 no.2
    • /
    • pp.286-291
    • /
    • 2009
  • Microorganisms in seafood cooking drips were counted and identified. Total viable cell counts were 6.40 and 3.10 log CFU/g in cooking drips of Hizikia fusiformis and Thunnus thynnus, respectively. However, microbial populations fell with increased irradiation doses. In H. fusiformis cooking drips, a 5-log reduction in total aerobic bacteria was obtained by irradiation with 5 kGy. In T. thynnus cooking drips, however, contaminating microorganisms were more resistant to gamma irradiation and only a 1-log reduction was seen. DNA sequence analysis showed that the principal contaminating microorganisms in H. fusiformis and T. thynnus cooking drips were Lactobacillus and Bacillus species, respectively. Therefore, the high irradiation resistance of T. thynnus cooking drips microbes may result from spore formation by Bacillus species.

Some Prophylactic Options to Mitigate Methane Emi ssion from Animal Agriculture in Japan

  • Takahashi, Junichi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.2
    • /
    • pp.285-294
    • /
    • 2011
  • The abatement of methane emission from ruminants is an important global issue due to its contribution to greenhouse gas with carbon dioxide. Methane is generated in the rumen by methanogens (archaea) that utilize metabolic hydrogen ($H_2$) to reduce carbon dioxide, and is a significant electron sink in the rumen ecosystem. Therefore, the competition for hydrogen used for methanogenesis with alternative reductions of rumen microbes should be an effective option to reduce rumen methanogenesis. Some methanogens parasitically survive on the surface of ciliate protozoa, so that defaunation or decrease in protozoa number might contribute to abate methanogenesis. The most important issue for mitigation of rumen methanogenesis with manipulators is to secure safety for animals and their products and the environment. In this respect, prophylactic effects of probiotics, prebiotics and miscellaneous compounds to mitigate rumen methanogenesis have been developed instead of antibiotics, ionophores such as monensin, and lasalocid in Japan. Nitrate suppresses rumen methanogenesis by its reducing reaction in the rumen. However, excess intake of nitrate causes intoxication due to nitrite accumulation, which induces methemoglobinemia. The nitrite accumulation is attributed to a relatively higher rate of nitrate reduction to nitrite than nitrite to ammonia via nitroxyl and hydroxylamine. The in vitro and in vivo trials have been conducted to clarify the prophylactic effects of L-cysteine, some strains of lactic acid bacteria and yeast and/or ${\beta}$1-4 galactooligosaccharide on nitrate-nitrite intoxication and methanogenesis. The administration of nitrate with ${\beta}$1-4 galacto-oligosaccharide, Candida kefyr, and Lactococcus lactis subsp. lactis were suggested to possibly control rumen methanogenesis and prevent nitrite formation in the rumen. For prebiotics, nisin which is a bacteriocin produced by Lactococcus lactis subsp. lactis has been demonstrated to abate rumen methanogenesis in the same manner as monensin. A protein resistant anti-microbe (PRA) has been isolated from Lactobacillus plantarum as a manipulator to mitigate rumen methanogenesis. Recently, hydrogen peroxide was identified as a part of the manipulating effect of PRA on rumen methanogenesis. The suppressing effects of secondary metabolites from plants such as saponin and tannin on rumen methanogenesis have been examined. Especially, yucca schidigera extract, sarsaponin (steroidal glycosides), can suppress rumen methanogenesis thereby improving protein utilization efficiency. The cashew nutshell liquid (CNSL), or cashew shell oil, which is a natural resin found in the honeycomb structure of the cashew nutshell has been found to mitigate rumen methanogenesis. In an attempt to seek manipulators in the section on methane belching from ruminants, the arrangement of an inventory of mitigation technologies available for the Clean Development Mechanism (CDM) and Joint Implementation (JI) in the Kyoto mechanism has been advancing to target ruminant livestock in Asian and Pacific regions.

Antimicrobial activity and characterization for defensin of synthetic oligopeptides derived from Bombus ignitus (호박벌 유래 디펜신 유전자의 분자적 특성분석 및 항균 활성)

  • Kang, Heui-Yun;Kim, In-Woo;Lee, Joon-Ha;Kwon, Young Nam;Yun, Eun-Young;Yoon, Hyung Joo;Kim, Seong-Ryul;Kim, Iksoo;Hwang, Jae-Sam
    • Journal of Sericultural and Entomological Science
    • /
    • v.50 no.2
    • /
    • pp.161-165
    • /
    • 2012
  • Antimicrobial peptides of insects are found and reported as immune defence system against infectious agents. The peptides are produced by fat body cells and thrombocytoids, a blood cell type. Defensin is 38-45 amino acids long and consists of an ${\alpha}$-helix linked by a loop to an antiparallel ${\beta}$-sheet. Defensin from a bumblebee, Bombus ignitus, is known to comprise 52 amino acid residues. This peptide consists of two ${\alpha}$-helixes; ACAANCLSM and KTNFKDLWDKRF and one ${\beta}$-sheet; GGRCENGVCLCR. We carried out antibacterial activity test by radial diffusion assay against Staphylococcus aureus (Gram positive), Escherichia coli (Gram negative), Pseudomonas syringae (Gram negative), Candida albicans (fungi), MDRPA, MRSA, and VRE (antimicrobial resistant microbes) with synthetic oligopeptides from Peptron (Daejeon, Korea). The predicted curtailment fragment (GGRCEVCLCR-$NH_2$) for ${\beta}$-sheet had strong antibacterial activity when internal amino acids were removed. But, curtailment fragments (ACAANCLSM-$NH_2$ and TNFKDLWDKR-$NH_2$) of ${\alpha}$-helix were not showed antibacterial activity. These synthetic oligopeptides were showed the great activity against Gram positive and negative bacteria.

Prevention of Salmonella Infection in Layer Hen Fed with Microbial Fermented Citrus Shell (산란계 감염 살모넬라균 억제에 대한 감귤박 특이 발효 미생물 제제의 사료 첨가 효과)

  • Kang, Tae-Yoon;Kang, Syung-Tae;Ihn, Young-Ho;Lee, Yang-Ho;Cho, Don-Young;Lee, Sung-Jin;Son, Won-Geun;Heo, Moon-Soo;Jeong, Dong-Kee
    • Journal of Life Science
    • /
    • v.20 no.2
    • /
    • pp.190-196
    • /
    • 2010
  • Nowadays many people use antibiotics to protect processed foods from many pathogenic bacteria. The abuse of antibiotics, however, can run the risk of creating resistant forms of bacterium. Our study focus is on making new substances that can not only replace antibiotics but also be friendly to the environment. In our experiments, we used fermented citrus fruit, soil microbes and coenzyme Q10 as probiotics and prebiotics. Chickens in the experimental group were fed these substances via oral route while those in the control group were not. After specific time periods, blood and feces samples were collected to test for Salmonella spp.. It is interesting that fermented citrus fruit was the most effective in suppressing this bacterium. Furthermore, dissection of the experiment group chickens shows that their livers did not change to a yellow color, in contrast to the control group. The results confirmed our proposal that the chickens fed with these materials can be protected from infection by Salmonella and other pathogens. These probiotics and prebiotics are highly practical because they are natural substances that can be easily recycled in the environment. It can also be used as an animal feed ingredient because of its safety.

Brief Introduction of Research Progresses in Control and Biocontrol of Clubroot Disease in China

  • He, Yueqiu;Wu, Yixin;He, Pengfei;Li, Xinyu
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.05a
    • /
    • pp.45-46
    • /
    • 2015
  • Clubroot disease of crucifers has occurred since 1957. It has spread to the whole China, especially in the southwest and nourtheast where it causes 30-80% loss in some fields. The disease has being expanded in the recent years as seeds are imported and the floating seedling system practices. For its effective control, the Ministry of Agriculture of China set up a program in 2010 and a research team led by Dr. Yueqiu HE, Yunnan Agricultural University. The team includes 20 main reseachers of 11 universities and 5 institutions. After 5 years, the team has made a lot of progresses in disease occurrence regulation, resources collection, resistance identification and breeding, biological agent exploration, formulation, chemicals evaluation, and control strategy. About 1200 collections of local and commercial crucifers were identified in the field and by artificiall inoculation in the laboratories, 10 resistant cultivars were breeded including 7 Chinese cabbages and 3 cabbages. More than 800 antagostic strains were isolated including bacteria, stretomyces and fungi. Around 100 chemicals were evaluated in the field and greenhouse based on its control effect, among them, 6 showed high control effect, especially fluazinam and cyazofamid could control about 80% the disease. However, fluzinam has negative effect on soil microbes. Clubroot disease could not be controlled by bioagents and chemicals once when the pathogen Plasmodiophora brassicae infected its hosts and set up the parasitic relationship. We found the earlier the pathogent infected its host, the severer the disease was. Therefore, early control was the most effective. For Chinese cabbage, all controlling measures should be taken in the early 30 days because the new infection could not cause severe symptom after 30 days of seeding. For example, a biocontrol agent, Bacillus subtilis Strain XF-1 could control the disease 70%-85% averagely when it mixed with seedling substrate and was drenching 3 times after transplanting, i.e. immediately, 7 days, 14 days. XF-1 has been deeply researched in control mechanisms, its genome, and development and application of biocontrol formulate. It could produce antagonistic protein, enzyme, antibiotics and IAA, which promoted rhizogenesis and growth. Its The genome was sequenced by Illumina/Solexa Genome Analyzer to assembled into 20 scaffolds then the gaps between scaffolds were filled by long fragment PCR amplification to obtain complet genmone with 4,061,186 bp in size. The whole genome was found to have 43.8% GC, 108 tandem repeats with an average of 2.65 copies and 84 transposons. The CDSs were predicted as 3,853 in which 112 CDSs were predicted to secondary metabolite biosynthesis, transport and catabolism. Among those, five NRPS/PKS giant gene clusters being responsible for the biosynthesis of polyketide (pksABCDEFHJLMNRS in size 72.9 kb), surfactin(srfABCD, 26.148 kb, bacilysin(bacABCDE 5.903 kb), bacillibactin(dhbABCEF, 11.774 kb) and fengycin(ppsABCDE, 37.799 kb) have high homolgous to fuction confirmed biosynthesis gene in other strain. Moreover, there are many of key regulatory genes for secondary metabolites from XF-1, such as comABPQKX Z, degQ, sfp, yczE, degU, ycxABCD and ywfG. were also predicted. Therefore, XF-1 has potential of biosynthesis for secondary metabolites surfactin, fengycin, bacillibactin, bacilysin and Bacillaene. Thirty two compounds were detected from cell extracts of XF-1 by MALDI-TOF-MS, including one Macrolactin (m/z 441.06), two fusaricidin (m/z 850.493 and 968.515), one circulocin (m/z 852.509), nine surfactin (m/z 1044.656~1102.652), five iturin (m/z 1096.631~1150.57) and forty fengycin (m/z 1449.79~1543.805). The top three compositions types (contening 56.67% of total extract) are surfactin, iturin and fengycin, in which the most abundant is the surfactin type composition 30.37% of total extract and in second place is the fengycin with 23.28% content with rich diversity of chemical structure, and the smallest one is the iturin with 3.02% content. Moreover, the same main compositions were detected in Bacillus sp.355 which is also a good effects biocontol bacterial for controlling the clubroot of crucifer. Wherefore those compounds surfactin, iturin and fengycin maybe the main active compositions of XF-1 against P. brassicae. Twenty one fengycin type compounds were evaluate by LC-ESI-MS/MS with antifungal activities, including fengycin A $C_{16{\sim}C19}$, fengycin B $C_{14{\sim}C17}$, fengycin C $C_{15{\sim}C18}$, fengycin D $C_{15{\sim}C18}$ and fengycin S $C_{15{\sim}C18}$. Furthermore, one novel compound was identified as Dehydroxyfengycin $C_{17}$ according its MS, 1D and 2D NMR spectral data, which molecular weight is 1488.8480 Da and formula $C_{75}H_{116}N_{12}O_{19}$. The fengycin type compounds (FTCPs $250{\mu}g/mL$) were used to treat the resting spores of P. brassicae ($10^7/mL$) by detecting leakage of the cytoplasm components and cell destruction. After 12 h treatment, the absorbencies at 260 nm (A260) and at 280 nm (A280) increased gradually to approaching the maximum of absorbance, accompanying the collapse of P. brassicae resting spores, and nearly no complete cells were observed at 24 h treatment. The results suggested that the cells could be lyzed by the FTCPs of XF-1, and the diversity of FTCPs was mainly attributed to a mechanism of clubroot disease biocontrol. In the five selected medium MOLP, PSA, LB, Landy and LD, the most suitable for growth of strain medium is MOLP, and the least for strains longevity is the Landy sucrose medium. However, the lipopeptide highest yield is in Landy sucrose medium. The lipopeptides in five medium were analyzed with HPLC, and the results showed that lipopeptides component were same, while their contents from B. subtilis XF-1 fermented in five medium were different. We found that it is the lipopeptides content but ingredients of XF-1 could be impacted by medium and lacking of nutrition seems promoting lipopeptides secretion from XF-1. The volatile components with inhibition fungal Cylindrocarpon spp. activity which were collect in sealed vesel were detected with metheds of HS-SPME-GC-MS in eight biocontrol Bacillus species and four positive mutant strains of XF-1 mutagenized with chemical mutagens, respectively. They have same main volatile components including pyrazine, aldehydes, oxazolidinone and sulfide which are composed of 91.62% in XF-1, in which, the most abundant is the pyrazine type composition with 47.03%, and in second place is the aldehydes with 23.84%, and the third place is oxazolidinone with 15.68%, and the smallest ones is the sulfide with 5.07%.

  • PDF